Preprint
Article

This version is not peer-reviewed.

A Machine-Learning Based IoT System for Optimizing Nutrient Supply in Commercial Aquaponic Operations

A peer-reviewed article of this preprint also exists.

Submitted:

01 March 2022

Posted:

02 March 2022

You are already at the latest version

Abstract
Nutrient regulation in aquaponic environments has been the topic of research for many years. Most have focused on appropriate control of nutrients in an aquaponic set-up, but very little research has been done on commercial scale applications. In our model, the input data was sourced on a weekly basis from three commercial aquaponic farms in South-East Texas over the course of a year. Due to limited number of data points, dimensionality reduction techniques like pair-wise correlation matrix was used to remove the highly correlated predictors. Feature selection techniques like the XGBoost classifier and Recursive Feature Elimination with ExtraTreesClassifier were used to rank the features in order of their relative importance. Ammonium and calcium were found to be the top two nutrient predictors and based on the months in which lettuce was cultivated, the median of these nutrient values from the historical dataset served as the optimal concentrations to be maintained in the aquaponic solution. To accomplish this, Vernier sensors were used to measure the nutrient values and actuator systems were built to dispense the appropriate nutrient into the ecosystem via a closed loop.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated