Preprint Technical Note Version 1 Preserved in Portico This version is not peer-reviewed

Integration of Modified Solvay Process for Sodium Bicarbonate Synthesis from Saline Brines with Steelmaking for Utilization of Electric Arc Furnace Slag in CO2 Sequestration and Reagent Regeneration

Version 1 : Received: 30 October 2023 / Approved: 31 October 2023 / Online: 31 October 2023 (12:24:38 CET)

A peer-reviewed article of this Preprint also exists.

Anto, S.M.; Ali, A.; Santos, R.M. Integration of Modified Solvay Process for Sodium Bicarbonate Synthesis from Saline Brines with Steelmaking for Utilization of Electric Arc Furnace Slag in CO2 Sequestration and Reagent Regeneration. Minerals 2024, 14, 97. Anto, S.M.; Ali, A.; Santos, R.M. Integration of Modified Solvay Process for Sodium Bicarbonate Synthesis from Saline Brines with Steelmaking for Utilization of Electric Arc Furnace Slag in CO2 Sequestration and Reagent Regeneration. Minerals 2024, 14, 97.

Abstract

In the pursuit of sustainable solutions for carbon dioxide CO2 sequestration and emission reduction in the steel industry, this study presents an innovative integration of steelmaking slag with the modified Solvay process for sodium bicarbonate (NaHCO3) synthesis from saline brines. Utilizing diverse minerals, including electric arc furnace (EAF) slag, olivine, and kimberlite, the study explored their reactivity under varied pH conditions and examined their potential in ammonium regeneration. Advanced techniques such as XRD and ICP-OES were employed to meticulously analyze mineralogical transformations and elemental concentrations. The findings demonstrate that steelmaking slag, owing to its superior reactivity and pH buffering capabilities, outperforms natural minerals. The integration of finer slag particles significantly elevated pH levels, facilitating efficient ammonium regeneration. Geochemical modeling provided valuable insights into mineral stability and reactivity which aligned with the ICP-OES results. This synergistic approach not only aids in CO2 capture through mineral carbonation but also minimizes waste, showcasing its potential as a sustainable and environmentally responsible solution for CO2 mitigation in the steel industry.

Keywords

carbon capture; utilization and sequestration; carbon dioxide; steelmaking; EAF slag; brine; climate change

Subject

Engineering, Chemical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.