Submitted:
30 October 2023
Posted:
31 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Relativistic Hydrodynamics of the Membrane Approach
2.1. From Gauss-Codazzi to Damour-Navier-Stokes and Raychaudhuri Equations
2.2. The Null-Hypersurface Limit
3. Exploring the RDNS Equations of the Null-Hypersurface Limit
3.1. The Schwarzshild Solution
- The first one is realized asand, with and , this line element becomes forand
-
The second possibility comes asHence, for , one chooses
3.2. The Kerr Black Hole
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| BH | Black hole |
| EMT | Energy-momentum tensor |
| GR | General Relativity |
| RDNS | Raychaudhuri-Damour-Navier-Stokes |
Appendix A. the Surface Gravity for the Kerr Solution
- i)
- the vector is the velocity of the so-called stationary observer, which possesses arbitrary, but uniform, angular velocity ;
- ii)
-
this angular velocity coincides with the ZAMO (zero angular momentum observer) angular velocity, defined by . For the metric (52), the zero angular momentum is realized as . Hence,
- iii)
- the angular velocity coincides with the angular velocity of the black hole on the black hole horizon
References
- Thorne, K. S.; Price, R. H.; Macdonald, D. A. Black Holes: The Membrane Paradigm; Yale Univ. Press: New Haven, USA, 1986; 367p. [Google Scholar]
- Damour, T. Black Hole Eddy Currents. Phys. Rev. D 1978, 18, 3598–3604. [Google Scholar] [CrossRef]
- Damour, T. Surface effects in black hole physics. In Proceedings of the second Marcel Grossmann Meeting on general relativity; Ruffini, R., Ed.; North-Holland, 1982; pp. 508–687. [Google Scholar]
- Parikh, M.; Wilczek, F. An Action for black hole membranes. Phys. Rev. D 1997, 58, 064011. [Google Scholar] [CrossRef]
- Kovtun, P. K.; Starinets, A. O. Quasinormal modes and holography. Phys. Rev. D 2005, 72, 086009. [Google Scholar] [CrossRef]
- de Boer, J.; Heller, M. P.; Pinzani-Fokeeva, N. Testing the membrane paradigm with holography. Phys. Rev. D 2015, 91, 026006. [Google Scholar] [CrossRef]
- Kovtun, P.; Son, D. T.; Starinets, A. O. Holography and hydrodynamics: Diffusion on stretched horizons. JHEP 2003, 10, 064. [Google Scholar] [CrossRef]
- Iqbal, N.; Liu, H. Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm. Phys. Rev. D 2009, 79, 025023. [Google Scholar] [CrossRef]
- Kovtun, P.; Ritz, A. Universal conductivity and central charges. Phys. Rev. D 2008, 78, 066009. [Google Scholar] [CrossRef]
- Ritz, A. Probing universality in AdS/CFT. Int. J. Mod. Phys. A 2010, 25, 433–443. [Google Scholar] [CrossRef]
- Bredberg, I.; Keeler, C.; Lysov, V.; Strominger, A. Wilsonian Approach to Fluid/Gravity Duality. JHEP 2011, 03, 141. [Google Scholar] [CrossRef]
- Faulkner, T.; Liu, H.; Rangamani, M. Integrating out geometry: Holographic Wilsonian RG and the membrane paradigm. JHEP 2011, 08, 051. [Google Scholar] [CrossRef]
- Nurmagambetov, A. J.; Arslanaliev, A. M. Kerr Black Holes within the Membrane Paradigm. LHEP 2022, 2022, 328. [Google Scholar]
- Misner, C. W.; Thorne, K. S.; Wheeler, J. A. Gravitation; W. H. Freeman: San Francisco, USA, 1973. [Google Scholar]
- Gourgoulhon, E. A Generalized Damour-Navier-Stokes equation applied to trapping horizons. Phys. Rev. D 2005, 72, 104007. [Google Scholar] [CrossRef]
- Gourgoulhon, E.; Jaramillo, J. L. A 3+1 perspective on null hypersurfaces and isolated horizons. Phys. Rept. 2006, 423, 159–294. [Google Scholar] [CrossRef]
- Straumann, N. General Relativity; Springer: Berlin, 2013. [Google Scholar]
- Raychaudhuri, A. Relativistic cosmology. 1. Phys. Rev. 1955, 98, 1123–1126. [Google Scholar] [CrossRef]
- Padmanabhan, T. Entropy density of spacetime and the Navier-Stokes fluid dynamics of null surfaces. Phys. Rev. D 2011, 83, 044048. [Google Scholar] [CrossRef]
- Li, L.; Wang, T. Membrane paradigm of the static black bottle. arXiv arXiv:1710.00744.
- Alcubierre, M. Introduction to 3+1 Numerical Relativity; Oxford Academic Press: Oxford, 2008. [Google Scholar]
- Hájiček, P. Three remarks on axisymmetric stationary horizons. Commun. Math. Phys. 1974, 36, 305–320. [Google Scholar] [CrossRef]
- Hartle, J. B.; Thorne, K. S. Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars. Astrophys. J. 1968, 153, 807–834. [Google Scholar] [CrossRef]
- Johannsen, T.; Psaltis, D. A Metric for Rapidly Spinning Black Holes Suitable for Strong-Field Tests of the No-Hair Theorem. Phys. Rev. D 2011, 83, 124015. [Google Scholar] [CrossRef]
- Rezzolla, L.; Zhidenko, A. New parametrization for spherically symmetric black holes in metric theories of gravity. Phys. Rev. D 2014, 90, 084009. [Google Scholar] [CrossRef]
- Konoplya, R.; Rezzolla, L.; Zhidenko, A. General parametrization of axisymmetric black holes in metric theories of gravity. Phys. Rev. D 2016, 93, 064015. [Google Scholar] [CrossRef]
- Konoplya, R. A.; Zhidenko, A. General black-hole metric mimicking Schwarzschild spacetime. JCAP 2023, 08, 008. [Google Scholar] [CrossRef]
- Nashed, G. G. L.; Bamba, K. Slow Kerr-NUT Solution within the context of dynamically modified gravity through Chern-Simons theory. arXiv arXiv:2308.06487.
- Hartong, J.; Have, E.; Obers, N. A.; Pikovski, I. A coupling prescription for post-Newtonian corrections in Quantum Mechanics. arXiv arXiv:2308.07373. [CrossRef]
| 1 | Strictly speaking, in [13] we used the Membrane Paradigm in part, since we solely focused on the external part of the Kerr spacetime. We thank Prof. O.B. Zaslavskii for comments in this respect. |
| 2 | Following Misner, Thorne and Wheeler [14], we will refer to these equations as the Gauss-Codazzi ones. |
| 3 | Since the expansion and the shear tensor are also characteristics of the fluid, we refer to the Raychaudhuri equation as to a hydrodynamic-type equation. |
| 4 | More on computations of the surface gravity in the Kerr BH case can be found in Appendix A. |
| 5 | The scaling in of different variables depends on their physical interpretation. The Hájiček field [22] is a measure of rotation, and it does not depend on a specific spacetime point, though it depends on the chosen frame. |
| 6 | In Section 3 we will justify this claim for the Kerr solution by direct computations. |
| 7 | We set . |
| 8 | |
| 9 | Note, that here we consider the external part of the Kerr spacetime. Therefore, is the largest root of algebraic equation (the outer horizon). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
