Yudina, N.Y.; Kozlova, T.N.; Bogachikhin, D.A.; Kosarenina, M.M.; Arlyapov, V.A.; Alferov, S.V. Electrochemical Biosensors for Express Analysis of the Integral Toxicity of Polymer Materials. Biosensors2023, 13, 1011.
Yudina, N.Y.; Kozlova, T.N.; Bogachikhin, D.A.; Kosarenina, M.M.; Arlyapov, V.A.; Alferov, S.V. Electrochemical Biosensors for Express Analysis of the Integral Toxicity of Polymer Materials. Biosensors 2023, 13, 1011.
Yudina, N.Y.; Kozlova, T.N.; Bogachikhin, D.A.; Kosarenina, M.M.; Arlyapov, V.A.; Alferov, S.V. Electrochemical Biosensors for Express Analysis of the Integral Toxicity of Polymer Materials. Biosensors2023, 13, 1011.
Yudina, N.Y.; Kozlova, T.N.; Bogachikhin, D.A.; Kosarenina, M.M.; Arlyapov, V.A.; Alferov, S.V. Electrochemical Biosensors for Express Analysis of the Integral Toxicity of Polymer Materials. Biosensors 2023, 13, 1011.
Abstract
Biosensors based on an oxygen electrode, a mediator electrode and a mediator microbial biofuel cell (MFC) using on the bacteria Gluconobacter oxydans B-1280 have been formed and tested to determine the integral toxicity. G. oxydans bacteria exhibit high sensitivity to the toxic effects of phenol, 2,4-dinitrophenol, salicylic and trichloroacetic acid and a number of heavy metal ions. The system “G. oxydans bacteria – ferrocene – graphite-paste electrode” is superior in sensitivity to biosensors formed using an oxygen electrode and MFC, in particular regarding heavy metal ions (EC50 of chromium (II), manganese (II) and cadmium (II) was 0.8 mg/dm3, 0.3 mg/dm3 and 1.6 mg/dm3, respectively). It has been determined that the period of stable functioning of electrochemical systems during measurements is reduced by half due (from 30 to 15 days) due to changes in the enzyme system of microbial cells when exposed to toxicants. Samples of products made from polymeric materials were analyzed using developed biosensor systems and standard biotesting methods based on inhibiting the growth of duckweed L. minor, reducing the motility of bull sperm and quenching the luminescence of the commercial test system "Ecolum". The developed bioelectrocatalytic systems are comparable in sensitivity to commercial biosensors, which made it possible to correlate the results and identify by all methods a highly toxic sample containing diphenylmethane-4,4'-diisocyanate according to GC-MS data.
Biology and Life Sciences, Biology and Biotechnology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.