Submitted:
28 October 2023
Posted:
30 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurement of Mood
2.3. Measurement of Affect
2.4. Procedure
2.5. Data Analysis
3. Results
3.1. Confirmatory Factor Analysis of the BRUMS-Greek
3.2. Confirmatory Factor Analysis of the I-PANAS-SF-Greek
3.3. Concurrent Validity
3.4. Group Differences in Mood
4. Discussion
4.1. Factorial Validity and Internal Consistency Reliability
4.2. Concurrent Validity
4.3. Between-Group Differences
4.4. Implications of the Findings
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Beedie, C. J., Terry, P. C., & Lane, A. M. (2000). The Profile of Mood States and athletic performance: Two meta-analyses. Journal of Applied Sport Psychology, 12, 49-68. [CrossRef]
- Lochbaum, M., Zanatta, T., Kirschling, D., & May, E. (2021). The Profile of Moods States and athletic performance: A meta-analysis of published studies. European Journal of Investigation in Health, Psychology and Education, 11(5), 50−70. [CrossRef]
- Berger, B. G., & Motl, R. W. (2000). Exercise and mood: A selective review and synthesis of research employing the Profile of Mood States. Journal of Applied Sport Psychology, 12, 69-92. [CrossRef]
- Helfer, S. G., Elhai, J. D., & Geers, A. L. (2015). Affect and exercise: Positive affective expectations can increase post-exercise mood and exercise intentions. Annals of Behavioral Medicine, 49, 269-279. 10.1007/s12160-014-9656-1. [CrossRef]
- White, R. L., Ryan, D., Young, C., Elston, R., & Rossi, T. (2023). How does the context of physical activity influence perceived mood and wellbeing after exercise? Mental Health and Physical Activity, 24, e100504. [CrossRef]
- Morgan, W. (1985). Selected psychological factors limiting performance: A mental health model. In Clarke, D. H. and Eckert, H. M. (Eds.), Limits of human performance (pp. 70-80). Champaign, IL: Human Kinetics.
- LeUnes, A., & Burger, J. (2000). Profile of Mood States research in sport and exercise psychology: Past, present, and future. Journal of Applied Sport Psychology, 12, 5-15. [CrossRef]
- Lane, A. M., & Terry, P. C. (2000). The nature of mood: Development of a conceptual model with a focus on depression. Journal of Applied Sport Psychology, 12, 16-33. [CrossRef]
- Feldman Barrett, L., & Russell, J. A. (1998). Independence and bipolarity in the structure of current affect. Journal of Personality and Social Psychology, 74, 967-984. [CrossRef]
- Beedie, C. J., Terry, P. C., & Lane, A. M. (2005). Distinctions between emotion and mood. Cognition and Emotion, 18, 847-878. [CrossRef]
- Siemer, M. (2009). Mood experience: Implications of a dispositional theory of mood. Emotion Review, 1, 256-263. [CrossRef]
- American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed). American Psychiatric Association. Arlington, VA: USA.
- McNair, D. M., Lorr, M., & Droppelman, L. F. (1971). Manual for the Profile of Mood States. Educational and Industrial Testing Services. San Diego, CA: USA.
- McNair, D. M., Lorr, M., & Droppelman, L. F. (1992). Revised Manual for the Profile of Mood States. Educational and Industrial Testing Services. San Diego, CA: USA.
- Terry, P. C., Lane, A. M., Lane, H. J., & Keohane, L. (1999). Development and validation of a mood measure for adolescents. Journal of Sports Sciences, 17, 861-872. [CrossRef]
- Terry, P. C., Lane, A. M., & Fogarty, G. J. (2003). Construct validity of the Profile of Mood States -- Adolescents for use with adults. Psychology of Sport and Exercise, 4, 125-139. [CrossRef]
- Ekkekakis, P. (2013). The measurement of affect, mood, and emotion: A guide for health-behavioral research. New York, NY: Cambridge University Press.
- Terry, P. C., & Parsons-Smith, R. L. (2021). Mood profiling for sustainable mental health among athletes. Sustainability, 13, e6116. [CrossRef]
- Andrade, A., Bevilacqua, G., Casagrande, P., Brandt, R., & Coimbra, D. (2019). Sleep quality associated with mood in elite athletes. Physician and Sports Medicine, 47, 312-317. [CrossRef]
- Marttinen, R. H. J., Judelson, D. A., Wiersma, L. D., & Coburn, J. W. (2011). Effects of self-selected mass loss on performance and mood in collegiate wrestlers. Journal of Strength and Conditioning Research, 25, 1010-1015. [CrossRef]
- Bueno, J. C. A., Silva, R. B., Pierluigi, D., Andreato, L. V., & Andrade, A. (2023). Effect of rapid weight loss on mood states and burnout of Brazilian jiu-jitsu athletes during a competitive process. Frontiers in Psychology, 14, e1114816. https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1114816.
- Trabelsi, K., Ammar, A., Boujelbène, M. A., Khacharem, A., Elghoul, Y., Boukhris, O. ... & Terry, P. C. (2022). Ramadan observance is associated with higher fatigue and lower vigor in athletes: A systematic review and meta-analysis with meta-regression. International Review of Sport and Exercise Psychology, 16, e2106790. [CrossRef]
- Terry, P. C., & Slade, A. (1995). Discriminant effectiveness of psychological state measures in predicting performance outcome in karate competition. Perceptual and Motor Skills, 81, 275-286. [CrossRef]
- Lane, A. M., Terry, P. C., Karageorghis, C. I., & Lawson, J. (1999). Mood states as predictors of kickboxing performance: A test of a conceptual model. Journal of Sports Sciences, 17, 57-58. [CrossRef]
- Du, Y., Yang, Y., Wang, X., Xie, C., Liu, C., Hu, W., & Li, Y. (2020). A positive role of negative mood on creativity: The opportunity in the crisis of the COVID-19 pandemic. Frontiers in Psychology, 11, e600837. [CrossRef]
- Lane, A. M., Crone-Grant, D., & Lane, H. (2002). Mood changes following exercise. Perceptual and Motor Skills, 94, 732-734. [CrossRef]
- Terry, P. C., Karageorghis, C. I., Mecozzi Saha, A., & D’ Auria, S. (2012). Effects of synchronous music on treadmill running among elite triathletes. Journal of Science and Medicine in Sport, 15, 52-57. [CrossRef]
- van Wijk, C. H., Martin, J. H., & Hans-Arendse, C. (2013). Clinical utility of the Brunel Mood Scale in screening for post-traumatic stress risk in a military population. Military Medicine, 178, 372-376. [CrossRef]
- Sties, S. W., Gonzales, A. I., Netto, A. S., Wittkopf, P. G., Lima, D. P., & de Carvalho, T. (2014). Validation of the Brunel Mood Scale for cardiac rehabilitation program. Brazilian Journal of Sports Medicine, 20, 281-284. [CrossRef]
- Gould, M. S., Marrocco, F. A., Kleinman, M., Thomas, J.G., Mostkoff, K., Côté, J., & Davies M. (2005). Evaluating iatrogenic risk of youth suicide screening programs: A randomised controlled trial. Journal of the American Medical Association, 29, 1635–1643. [CrossRef]
- Lee, J. E., Xiang, P. & Gao, Z. (2017). Acute effect of active video games on older children's mood change. Computers in Human Behavior, 70, 97-103. [CrossRef]
- Lewis, C., Annett, L.E., Davenport, S., Hall, A. A., & Lovatt, P. (2016). Mood changes following social dance sessions in people with Parkinson’s disease. Journal of Health Psychology, 21, 483-492. [CrossRef]
- Brownlow, C., Eacersall, D., Nelson, C. W., Parsons-Smith, R. L., & Terry, P. C. (2022) Risks to mental health of higher degree by research (HDR) students during a global pandemic. PLOS ONE, 17, e0279698. [CrossRef]
- Campos, J. A. D. B., Campos, L. A., Bueno, J. L., & Martins, B. G. (2021). Emotions and mood swings of pharmacy students in the context of the coronavirus disease of 2019 pandemic. Currents in Pharmacy Teaching and Learning, 13, 635-642. [CrossRef]
- Campos, J. A. D. B., Campos, L. A., Martins, B. G., Valadão Dias, F., Ruano, R., & Maroco, J. (2022). The psychological impact of COVID-19 on individuals with and without mental health disorders. Psychological Reports, 125, 2435-2455. [CrossRef]
- Terry, P. C., Parsons-Smith, R. L., & Terry, V. R. (2020). Mood responses associated with COVID-19 restrictions. Frontiers in Psychology, 11, e589598. [CrossRef]
- Parsons-Smith, R. L., Terry, P. C., & Machin, M. A. (2017). Identification and description of novel mood profile clusters. Frontiers in Psychology, 8, e1958. [CrossRef]
- Raglin, J. S. (2001). Psychological factors in sport performance: The mental health model revisited. Sports Medicine, 31, 875-890. [CrossRef]
- Budgett, R. (1998). Fatigue and underperformance in athletes: The overtraining syndrome. British Journal of Sports Medicine, 32, 107-110. [CrossRef]
- Urhausen, A., Gabriel, H., Weiler, B., & Kindermann, W. (1998). Ergometric and psychological findings during overtraining: A long-term follow-up study in endurance athletes. International Journal of Sports Medicine, 19, 114-120. [CrossRef]
- Galambos, S. A., Terry, P. C., Moyle, G. M., & Locke, S. A. (2005). Psychological predictors of injury among elite athletes. British Journal of Sports Medicine, 39, 351-354. [CrossRef]
- Rossiter, A., Comyns, T. M., Sherwin, I., Nevill, A. M., Campbell, M. J., & Warrington, G. D. (2022) Effects of long-haul transmeridian travel on physiological, sleep, perceptual and mood markers in Olympic team support staff. Chronobiology International, 39, 1640-1655. [CrossRef]
- Sobhani, V., Rostamizadeh, M., Hosseini, S., Hashemi, S., Refoyo Roman, I., & Mo-Lopez, D. (2022). Anthropometric, physiological and psychological variables that determine the elite pistol performance of women. International Journal of Environmental Research and Public Health, 19, 1102. [CrossRef]
- Terry, P. C., Potgieter, J. R., & Fogarty, G. J. (2003). The Stellenbosch Mood Scale: A dual-language measure of mood. International Journal of Sport and Exercise Psychology, 1, 231-245. [CrossRef]
- Hasan, M. M., & Mozibul, H. A. K. (2022). Bangla version of the Brunel Mood Scale (BRUMS): Validity, measurement invariance and normative data in non-clinical sample. Heliyon, 8, e09666. [CrossRef]
- Rohlfs, I. C. P. M., Rotta, T. M., Luft, C. B., Andrade, A., Krebs, R. J., & Carvalho, T. (2008). Brunel Mood Scale: An instrument for early detection of overtraining syndrome. Brazilian Journal of Sports Medicine, 14, 176-181. [CrossRef]
- Zhang, C.Q., Si, G., Chung, P. K., Du, M., & Terry, P. C. (2014). Psychometric properties of the Brunel Mood Scale in Chinese adolescents and adults. Journal of Sports Sciences, 32, 1465-1476. [CrossRef]
- Kvĕton, P., Jelínek, M., Burešová, I., & Bartošová, K. (2020). Czech adaptation of the Brunel Mood States for adolescent athletes. Studia Sportiva, 14, 47-57. [CrossRef]
- Terry, P. C., Malekshahi, M., & Delva, H. A. (2012). Development and initial validation of the Farsi Mood Scale. International Journal of Sport and Exercise Psychology, 10, 112-122. [CrossRef]
- Rouveix, M., Duclos, M., Gouarne, C., Beauvieux, M. C., & Filaire, E. (2006). The 24h urinary cortisol/cortisone ratio and epinephrine/norepinephrine ratio for monitoring training in young female tennis players. International Journal of Sports Medicine, 27, 856-863. [CrossRef]
- Lane, A. M., Soos, I., Leibinger, E., Karsai, I., & Hamar, P. (2007). Validity of the Brunel Mood Scale for use with UK, Italian and Hungarian athletes. In Lane, A.M. (Ed.). Mood and human performance: Conceptual, measurement, and applied issues (pp. 119-130). Hauppauge, NY: Nova Science.
- Quartiroli, A. Terry, P. C., & Fogarty, G. J. (2017). Development and initial validation of the Italian Mood Scale (ITAMS) for use in sport and exercise contexts. Frontiers in Psychology, 7, e1483. [CrossRef]
- Yatabe, K., Oyama, T., Fujiya, H., Kato, H., Seki, H., & Kohno, T. (2006). Development and validation of the preliminary Japanese version of the Profile of Mood States for adolescents. St. Marianna Medical Journal, 32, 539-547.
- Terry, P. C., Skurvydas, A., Lisinskienė, A., Majauskienė, D., Valančienė, D., Cooper, S., & Lochbaum, M. (2022). Validation of a Lithuanian-language version of the Brunel Mood Scale: the BRUMS-LTU. International Journal of Environmental Research and Public Health, 19, e4826. https://www.mdpi.com/1660-4601/19/8/4867.
- Lew, P. C. F., Parsons-Smith, R. L., Lamont-Mills, A., & Terry, P. C. (2023). Cross-cultural validation of the Malaysian Mood Scale and tests of between-group mood differences. International Journal of Environmental Research and Public Health, 20, e043348. [CrossRef]
- Rajkovic, I. (2014). Translation and validation of the Brunel Mood Scale for a Serbian athlete population. Unpublished master thesis, University of Jyväskylä, Finland.
- Cañadas. E., Monleón, C., Sanchis, C., Fargueta, M., & Blasco, E. (2017). Spanish validation of BRUMS in sporting and non-sporting populations. European Journal of Human Movement, 38, 105-117. http://www.eurjhm.com/index.php/eurjhm/article/view/413/608.
- Çakiroğlu, A. A., Demir, E., & Güçlü, M. (2020). The validity and reliability study of the Brunel Mood Scale with the adult athletes (Turkish Adaptation). International Journal of Applied Exercise Physiology, 9, 126-140. [CrossRef]
- Han, C. S. Y., Parsons-Smith, R. L., Fogarty, G. J., & Terry, P. C. (2022). Psychometric properties of the Brunel Mood Scale among athletes and non-athletes in Singapore. International Journal of Sport and Exercise Psychology, 22, 698-714. [CrossRef]
- Marsh, H. W. (2007). Application of confirmatory factor analysis and structural equation modeling in sport and exercise psychology. In G. Tenenbaum and R. C. Eklund (Eds.), Handbook of sport psychology (3rd ed.). Hoboken, NJ: John Wiley.
- Segall, M. H., Lonner, W. J., & Berry, J. W. (1998). Cross-cultural psychology as a scholarly discipline: On the flowering of culture in behavioral research. American Psychologist, 53, 1101-1110. [CrossRef]
- Duda, J. L., & Allison, M. T. (1990). Cross-cultural analysis in exercise and sport psychology: A void in the field. Journal of Sport and Exercise Psychology, 12, 114-131. [CrossRef]
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334. [CrossRef]
- Davidson, M. (2014). Known-groups validity. In Michalos, A. C. (Ed.). Encyclopedia of quality of life and well-being research. Dordrecht, Holland: Springer. [CrossRef]
- Rodrigues, I. B., Adachi, J. D., Beattie, K. A., Lau, A., & MacDermid, J. C. (2019). Determining known-group validity and test-retest reliability in the PEQ (Personalised Exercise Questionnaire). BMC Musculoskeletal Disorders, 20, e373. [CrossRef]
- American Psychological Association (2012). Stress by gender. https://www.apa.org/news/press/releases/stress/2012/gender.
- Mansur, R. B., Brietzke, E., & McIntyre, R. S. (2015). Is there a “metabolic-mood syndrome”? A review of the relationship between obesity and mood disorders. Neuroscience and Biobehavioral Reviews, 52, 89-104. [CrossRef]
- Frank, P., Jokela, M., Batty, G. D., Lassale, C., Steptoe, A., & Kivimaki, M. (2022). Overweight, obesity, and individual symptoms of depression: A multi-cohort study with replication in UK Biobank. Brain Behavior and Immunity, 105, 192-200. [CrossRef]
- Herring, M. P., & O’Connor, P. J. (2009). The effect of acute resistance exercise on feelings of energy and fatigue. Journal of Sports Sciences, 27, 701-709. [CrossRef]
- Huang, X., Wang, Y., & Zhang, H. (in press). Effects of physical exercise intervention on depressive and anxious moods of college students: A meta-analysis of randomised controlled trials. Asian Journal of Sport and Exercise Psychology. [CrossRef]
- Lane, A. M., & Lovejoy, D. J. (2001). The effects of exercise on mood changes: The moderating effect of depressed mood. Journal of Sports Medicine and Physical Fitness, 41, 539-545.
- Thompson, E. R. (2007). Development and validation of an internationally reliable short-form of the positive and negative affect schedule (PANAS). Journal of Cross-Cultural Psychology, 38, 227-242. [CrossRef]
- Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54, 1063-1070. [CrossRef]
- Brislin, R. W. (1970). Back-translation for cross-cultural research. Journal of Cross-Cultural Psychology, 1, 185-216. [CrossRef]
- Emerson, R. W. (2015). Convenience sampling, random sampling, and snowball sampling: How does sampling affect the validity of research? Journal of Visual Impairment and Blindness, 109, 164-168. [CrossRef]
- Bentler, P. M. (2003). EQS 6.1 for Windows [Computer software]. Encino, CA: Multivariate Software.
- Bentler, P. M., & Chou, C. (1987). Practical issues in structural modeling. Sociological Methods and Research, 16, 78-117. [CrossRef]
- Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to under-parameterised model misspecification. Psychological Methods, 3, 424-453. [CrossRef]
- Tabachnick, B. L., & Fidell, L. S. (2019). Using multivariate statistics (7th ed.). New York: Pearson Education.
- Kline, R.B. (2015). Principles and practice of structural equation modeling. New York: Guilford.
- Bentler, P. M. (1990). Comparative fit indices in structural models. Psychological Bulletin, 107, 238-246. [CrossRef]
- Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55. [CrossRef]
- Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173–180. [CrossRef]
- Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 132–162). Newbury Park, CA: Sage.
- Byrne, B. M. (2006). Structural equation modeling with EQS: Basic concepts, applications, and programming (2nd ed.). Mahwah, NJ: Lawrence Erlbaum.
- Nevill, A. M., & Lane, A. M. (2007). Why self-report “Likert” scale data should not be log-transformed. Journal of Sports Sciences, 25, 1-2. [CrossRef]
- Meisenberg, G., & Williams, A. (2008). Are acquiescent and extreme response styles related to low intelligence and education? Personality and Individual Differences, 44, 1539-1550. [CrossRef]
- Leiner, D. J. (2019). Too fast, too straight, too weird: Non-reactive indicators for meaningless data on internet surveys. Survey Research Methods, 13, 229-248. [CrossRef]
- Hutchinson, S. R., & Olmos, A. (1998). Behavior of descriptive fit indexes in confirmatory factor analysis using ordered categorical data. Structural Equation Modeling, 5, 344-364. [CrossRef]
- Lane, A. M., Terry, P. C., Devonport, T. J., Friesen, A. P., & Totterdell, P. A. (2017). A test and extension of Lane and Terry’s (2000) conceptual model of mood-performance relationships Using a large internet sample. Frontiers in Psychology, 8, e00470. https://www.frontiersin.org/articles/10.3389/fpsyg.2017.00470.
- Lan, M. F., Lane, A. M., Roy, J., & Hanin, N. A. (2012). Validity of the Brunel Mood Scale for use with Malaysian athletes. Journal of Sports Science and Medicine, 11, 131-135. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737843/.
- Reed, J., & Ones, D. S. (2006). The effect of acute aerobic exercise on positive activated affect: A meta-analysis. Psychology of Sport and Exercise, 7, 477-514. [CrossRef]
- Brown, D. R., Wang, Y., Ward, A., Ebbeling, C. B., Fortlage, L., Puleo, E., Benson, H., & Rippe, J. M. (1995). Chronic psychological effects of exercise and exercise plus cognitive strategies. Medicine and Science in Sports and Exercise, 27, 765-775. [CrossRef]
- Schuch, F. B., Stubbs, B., Meyer, J., Heissel, A., Zech, P., Vancampfort, D., et al. (2019). Physical activity protects from incident anxiety: A meta-analysis of prospective cohort studies. Depression and Anxiety, 36, 846-58. [CrossRef]
- Schuch, F. B., Vancampfort, D., Firth, J., Rosenbaum, S., Ward, P. B., Silva, E. S., et al. (2018). Physical activity and incident depression: A meta-analysis of prospective cohort studies. American Journal of Psychiatry, 175, 631-648. [CrossRef]
- Peluso, M. A., & Andrade, L. H. (2005). Physical activity and mental health: The association between exercise and mood. Clinics, 60, 61–70. [CrossRef]
- Terry, P. C., Parsons-Smith, R. L., King, R., & Terry, V.R. (2021). Influence of sex, age, and education on mood profile clusters. PLOS ONE, 16, e0245341. [CrossRef]
- Amin, Z., Canli, T., & Epperson, C.N. (2005). Effect of estrogen-serotonin interactions on mood and cognition. Behavioral and Cognitive Neuroscience Reviews, 4, 43–58. [CrossRef]
- Ruigrok, A. N. V., Salimi-Khorshidi, G., Lai, M. C., Baron-Cohen, S., Lombardo, M. V., Tait, R. J., & Suckling, J. (2014). A meta-analysis of sex differences in human brain structure. Behavioral and Cognitive Neuroscience Reviews, 39, 34–50. [CrossRef]
- Dorius, S. F., & Firebaugh, G. (2010). Trends in global gender inequality. Social Forces 88, 1941–1968. [CrossRef]
- Stamarski, C. S., & Son Hing, L. S. (2015). Gender inequalities in the workplace: The effects of organizational structures, processes, practices, and decision makers' sexism. Frontiers in Psychology, 6, e1400. [CrossRef]
- Platt, J., Prins, S., Bates, L., & Keyes, K. (2016). Unequal depression for equal work? How the wage gap explains gendered disparities in mood disorders. Social Science & Medicine, 149, 1–8. [CrossRef]
- Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R. & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Archives of General Psychiatry, 62, 593-602. [CrossRef]
- Thayer, R. E. (1989). The biopsychology of mood and arousal. New York: Oxford University Press.
- Saw, A. E., Main, L. C., & Gastin, P. B. (2016). Monitoring the athlete training response: Subjective self-reported measures trump commonly used objective measures: A systematic review. British Journal of Sports Medicine, 50, 281-291. [CrossRef]
- Lovell, G. (2004). Mood states and overtraining. In D. Lavalle, J. Thatcher, & M. V. Jones (Eds.), Coping and emotion in sport (pp. 55-73). Hauppauge, NY: Nova Science.
- Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., et al. (2017). Monitoring athlete training loads: Consensus statement. International Journal of Sports Physiology and Performance, 12, S2-161–S2-170. [CrossRef]
- Morgan, W. P., Brown, D. R.., Raglin, J. S., O’Connor, P. J., & Ellickson, K. (1987). Psychological monitoring of overtraining and staleness. British Journal of Sports Medicine, 21, 107-114. [CrossRef]
- Κούλη, O., Ρόκκα, Σ., & Κούλη, Ε. (2007). H επίδραση των προγραμμάτων yoga στην ψυχική διάθεση ενήλικων γυναικών [Effects of yoga exercise programs on mood states among adult women]. Aθλητική Ψυχολογία, 18, 59-71.
- Papastergiou, D., Kokaridas, D., Bonotis, K., Diggelidis, N., & Patsiaouras, A. (2018). Exercise, supportive group therapy, and mood profile of Greek cancer patients: Intervention effect and related comparisons. Supportive Care in Cancer, 26, 3571-3578. [CrossRef]
- Psychou, D., Kokaridas, D., Koulouris, N., Theodorakis, Y., Krommidas, C., & Psychos, C. (2021). Impact of exercise intervention on anxiety levels and mood profile of Greek prison inmates. Journal of Human Sport and Exercise, 16, 147-156. [CrossRef]
- Roussi, P. & Vassilaki, E, 2001. The applicability of the multiaxial model of coping to a Greek population. Anxiety, Stress and Coping, 14, 125–247. [CrossRef]
- Zervas, Y., Ekkekakis, P., Psychountaki, M., & Kakkos, V. (1993). Adaptation of Profile of Mood States (Shacham, 1983). Unpublished paper, University of Athens.
- Quartiroli, A., Parsons-Smith, R. L., Fogarty, G. J., Kuan, G., & Terry, P.C. (2018) Cross-cultural validation of mood profile clusters in a sport and exercise context. Frontiers in Psychology, 9, e1949 . [CrossRef]
- Terry, P. C., Parsons-Smith, R. L., Skurvydas, A., Lisinskienė, A., Majauskienė, D., Valančienė, D., Cooper, S., & Lochbaum, M. (2022). Physical activity and healthy habits influence mood profile clusters in a Lithuanian population. Sustainability, 14, e10006. [CrossRef]
- Han, C. S. Y., Parsons-Smith, R. L., & Terry, P. C. (2020). Mood profiling in Singapore: Cross-cultural validation and potential applications of mood profile clusters. Frontiers in Psychology, 11, e665. [CrossRef]
- Terry, P. C. (1995). The efficacy of mood state profiling with elite performers: A review and synthesis. The Sport Psychologist, 9, 309-324. [CrossRef]


| BRUMS factor | Original item | Translated item | M | SD | Item skewness | Item kurtosis | Item loading | Item uniqueness | SMC |
|---|---|---|---|---|---|---|---|---|---|
| Anger | Annoyed | Ενοχλημένη/ος | 0.44 | 0.87 | 2.23 | 4.65 | .839 | .545 | 70% |
| Bitter | Aισθάνομαι πικρόχολα | 0.20 | 0.62 | 3.82 | 16.17 | .843 | .537 | 71% | |
| Angry | Θυμωμένη/ος | 0.35 | 0.82 | 2.71 | 7.22 | .856 | .517 | 73% | |
| Bad tempered | Ευέξαπτη/ος | 0.62 | 1.00 | 1.63 | 1.88 | .715 | .699 | 51% | |
| Confusion | Confused | Σε σύγχυση | 0.45 | 0.86 | 2.08 | 3.82 | .803 | .596 | 64% |
| Mixed up | Μπερδεμένη/ος | 0.54 | 0.94 | 1.88 | 3.00 | .844 | .537 | 71% | |
| Muddled | Θολωμένη/ος στη σκέψη | 0.50 | 0.93 | 1.98 | 3.35 | .798 | .603 | 63% | |
| Uncertain | Aβεβαιότητα | 0.71 | 1.13 | 1.55 | 1.38 | .847 | .532 | 71% | |
| Depression | Depressed | Σε κατάθλιψη | 0.32 | 0.71 | 2.54 | 6.60 | .865 | .502 | 74% |
| Downhearted | Aποκαρδιωμένη/ος | 0.32 | 0.75 | 2.75 | 7.77 | .864 | .504 | 74% | |
| Unhappy | Aισθάνομαι δυστυχία | 0.25 | 0.69 | 3.36 | 12.15 | .899 | .438 | 80% | |
| Miserable | Μίζερη/ος | 0.24 | 0.67 | 3.27 | 11.66 | .871 | .491 | 75% | |
| Fatigue | Worn out | Aποκαμωμένη/ος | 0.53 | 0.90 | 1.82 | 2.76 | .733 | .680 | 53% |
| Exhausted | Εξαντλημένη/ος | 0.98 | 1.12 | 0.97 | -0.01 | .870 | .492 | 75% | |
| Sleepy | Σαν σε λήθαργο | 0.39 | 0.81 | 2.39 | 5.69 | .721 | .692 | 52% | |
| Tired | Κουρασμένη/ος | 1.29 | 1.17 | 0.61 | -0.58 | .785 | .619 | 61% | |
| Tension | Panicky | Πανικοβλημένη/ος | 0.27 | 0.73 | 3.04 | 9.30 | .663 | .748 | 44% |
| Anxious | Aγχωμένη/ος | 0.87 | 1.12 | 1.18 | 0.44 | .887 | .462 | 78% | |
| Worried | Aνήσυχη/ος | 0.80 | 1.08 | 1.29 | 0.82 | .919 | .394 | 84% | |
| Nervous | Νευρικότητα | 0.66 | 1.00 | 1.58 | 1.81 | .775 | .633 | 60% | |
| Vigour | Lively | Με ζωντάνια | 2.50 | 1.03 | -0.53 | -0.16 | .812 | .584 | 65% |
| Energetic | Γεμάτη/ος ενέργεια | 2.36 | 1.12 | -0.41 | -0.54 | .911 | .412 | 83% | |
| Active | Γεμάτη/ος διάθεση να κάνω πράγματα | 2.44 | 1.14 | -0.46 | -0.55 | .861 | .508 | 74% | |
| Alert | Σε εγρήγορση | 2.09 | 1.19 | -0.22 | -0.83 | .675 | .738 | 45% |
| Subscale | M | SD | Skewness | Kurtosis | Range | α | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1. Anger | 1.62 | 2.60 | 2.34 | 6.56 | 0–16 | .77 | ̶ | ||||
| 2. Confusion | 2.21 | 3.15 | 1.79 | 3.15 | 0–16 | .82 | .74* | ̶ | |||
| 3. Depression | 1.14 | 2.37 | 2.99 | 10.46 | 0–16 | .85 | .74* | .73* | ̶ | ||
| 4. Fatigue | 3.21 | 3.18 | 1.21 | 1.25 | 0–16 | .78 | .54* | .57* | .55* | ̶ | |
| 5. Tension | 2.62 | 3.16 | 1.43 | 1.71 | 0–16 | .80 | .69* | .79* | .65* | .53* | ̶ |
| 6. Vigour | 9.40 | 3.76 | -0.36 | -0.42 | 0–16 | .85 | -.23* | -.29* | -.31* | -.34* | -.22* |
| I-PANAS-SF Positive Affect | I-PANAS-SF Negative Affect | |
|---|---|---|
| M | 3.54 | 2.44 |
| SD | 0.66 | 0.63 |
| Range | 1.00–5.00 | 1.00–4.60 |
| α | .76 | .70 |
| Anger | -.26** | .46** |
| Confusion | -.35** | .50** |
| Depression | -.29** | .46** |
| Fatigue | -.25** | .39** |
| Tension | -.25** | .57** |
| Vigour | .67** | -.24** |
| Pre-post exercise (n = 398) | |||||||
| Pre-exercise | Post-exercise | ||||||
| Subscale | M | SD | M | SD | F | η2p | d |
| Anger | 0.86 | 1.72 | 0.44 | 1.44 | 39.32† | .036 | .47(s) |
| Confusion | 1.20 | 2.17 | 0.53 | 1.51 | 66.93† | 14.5 | .41(s) |
| Depression | 0.47 | 1.40 | 0.22 | 1.06 | 21.55† | .052 | .23(s) |
| Fatigue | 2.36 | 2.66 | 2.43 | 2.62 | 0.36 | .001 | .02(vs) |
| Tension | 1.64 | 2.28 | 0.66 | 1.49 | 108.97† | .216 | .52(m) |
| Vigour | 10.31 | 3.49 | 11.06 | 3.31 | 20.78† | .050 | .22(s) |
| Exercise participation (N = 1,786) | |||||||
| Exercise participants (n = 1,417) |
Physically inactive adults (n = 369) | ||||||
| Subscale | M | SD | M | SD | F | η2p | g |
| Anger | 1.37 | 2.38 | 2.58 | 3.14 | 66.04† | .036 | .47(s) |
| Confusion | 1.90 | 2.95 | 3.40 | 3.57 | 68.62† | .037 | .48(s) |
| Depression | 0.87 | 2.02 | 2.14 | 3.21 | 87.77† | .047 | .54(m) |
| Fatigue | 2.86 | 2.99 | 4.55 | 3.53 | 86.13† | .046 | .54(m) |
| Tension | 2.24 | 2.89 | 4.07 | 3.72 | 103.39† | .055 | .59(m) |
| Vigour | 9.52 | 3.78 | 8.97 | 3.65 | 6.32 | .004 | .14(vs) |
| Sex (N = 1,786) | |||||||
| Male (n = 578) | Female (n = 1,208) | ||||||
| Subscale | M | SD | M | SD | F | η2p | g |
| Anger | 1.71 | 2.71 | 1.57 | 2.55 | 1.13 | .001 | .05(vs) |
| Confusion | 2.12 | 3.16 | 2.25 | 3.14 | 0.74 | .000 | .04(vs) |
| Depression | 1.13 | 2.52 | 1.14 | 2.30 | 0.00 | .000 | .00(vs) |
| Fatigue | 2.97 | 3.13 | 3.32 | 3.21 | 4.89 | .003 | .11(vs) |
| Tension | 2.32 | 3.04 | 2.76 | 3.21 | 7.67* | .004 | .14(vs) |
| Vigour | 9.80 | 3.66 | 9.21 | 3.79 | 9.52* | .005 | .15(vs) |
| Age group (N = 1,786) | |||||||
| ≤ 35 yr. (n = 1,054) | ≥ 36 yr. (n = 732) | ||||||
| Subscale | M | SD | M | SD | F | η2p | g |
| Anger | 1.69 | 2.61 | 1.52 | 2.59 | 1.87 | .001 | .06(vs) |
| Confusion | 2.49 | 3.31 | 2.86 | 0.71 | 19.78† | .011 | .21(s) |
| Depression | 1.19 | 2.44 | 1.06 | 2.27 | 1.44 | .001 | .05(vs) |
| Fatigue | 3.30 | 3.20 | 3.07 | 3.16 | 2.22 | .001 | .07(vs) |
| Tension | 2.80 | 3.21 | 2.35 | 3.07 | 8.91* | .005 | .14(vs) |
| Vigour | 9.24 | 3.86 | 9.64 | 3.60 | 4.85 | .003 | .10(vs) |
| BMI excluding overweight (N = 1,287) | |||||||
| Underweight/normal weight (n = 1,155) | Persons with obesity (n = 132) |
||||||
| Subscale | M | SD | M | SD | F | η2p | g |
| Anger | 1.55 | 2.54 | 2.15 | 2.92 | 6.40 | .005 | .23(s) |
| Confusion | 2.25 | 3.13 | 2.44 | 3.21 | 0.44 | .000 | .06(vs) |
| Depression | 1.08 | 2.25 | 1.60 | 2.69 | 6.10 | .005 | .22(s) |
| Fatigue | 3.13 | 3.13 | 3.96 | 3.45 | 8.13* | .006 | .26(s) |
| Tension | 2.59 | 3.09 | 3.15 | 3.48 | 3.70 | .003 | .17(vs) |
| Vigour | 9.42 | 3.75 | 9.05 | 3.76 | 1.17 | .001 | .10(vs) |
| Raw score | Anger | Confusion | Depression | Fatigue | Tension | Vigour |
|---|---|---|---|---|---|---|
| 0 | 44 | 43 | 45 | 40 | 42 | 25 |
| 1 | 48 | 46 | 49 | 43 | 45 | 28 |
| 2 | 51 | 49 | 54 | 46 | 48 | 30 |
| 3 | 55 | 52 | 58 | 49 | 51 | 33 |
| 4 | 59 | 56 | 62 | 52 | 54 | 36 |
| 5 | 63 | 59 | 66 | 56 | 58 | 38 |
| 6 | 67 | 62 | 70 | 59 | 61 | 41 |
| 7 | 71 | 65 | 75 | 62 | 64 | 44 |
| 8 | 74 | 68 | 79 | 65 | 67 | 46 |
| 9 | 78 | 72 | 83 | 68 | 70 | 49 |
| 10 | 82 | 75 | 87 | 71 | 73 | 52 |
| 11 | 86 | 78 | 91 | 74 | 76 | 54 |
| 12 | 90 | 81 | 96 | 78 | 80 | 57 |
| 13 | 94 | 84 | 100 | 81 | 83 | 60 |
| 14 | 97 | 87 | 104 | 84 | 86 | 62 |
| 15 | 101 | 91 | 108 | 87 | 89 | 65 |
| 16 | 105 | 94 | 113 | 90 | 92 | 68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
