Submitted:
23 October 2023
Posted:
24 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kirpenko, N.I. , Kurashov, E.A., Krylova, J.V. Exogenous metabolite complexes of two blue-green algae in mono- and mixing cultures. Nauk Zap Ternop Nat Ped Univ Ser Biol 2010, 2, 241–244. [Google Scholar]
- Bataeva, Y.V. , Satkalieva, M.S., Astafyeva, O.V., Baimuhambetova, A.S., Antonova, S.V., Sinetova, M.A., Kozlova, A.Y. Study of Antioxidant Activity and Composition of Cyanobacteria Metabolites by TLC, HPTLC, and HPLC for the Search of Environmentally Safe Cleaning Agents. Russian Journal of General Chemistry 2018, 88, 2898–2902. [Google Scholar] [CrossRef]
- 3. Zothanpuia, Passari, A.K., Leo, V.V. et al. Correction to: Bioprospection of actinobacteria derived from freshwater sediments for their potential to produce antimicrobial compounds. Microb Cell Fact 2018, 17. [CrossRef]
- Figueredo, C.C. , Giani, A. , Bird, D.F. Does allelopathy contribute to Cylindrospermopsis raciborskii (Cyanobacteria) bloom occurrence and geographic expansion? J Phycol 2007, 43, 256–265. [Google Scholar]
- Pei, Y. , Xu, R., Hilt, S., Chang, X. Effects of Cyanobacterial Secondary Metabolites on Phytoplankton Community Succession. Co-Evolution of Secondary Metabolites 2018, 1–23. [Google Scholar] [CrossRef]
- Yang, Y. , Huang, B., Tang, Y., Xu, N. Allelopathic effects of mixotrophic dinoflagellate Akashiwo sanguinea on co-occurring phytoplankton: the significance of nutritional ecology. J. Ocean. Limnol 2021, 39, 903–917. [Google Scholar] [CrossRef]
- Huang, I.-S. , Zimba, P.V. Cyanobacterial bioactive metabolites—A review of their chemistry and biology. Harmful Algae 2019, 101608. [Google Scholar] [CrossRef]
- Landsberg, J.H. , Hendrickson, J., Tabuchi, M., Kiryu, Y., Williams, B.J., Tomlinson, M.C. A large-scale sustained fish kill in the St. Johns River, Florida: A complex consequence of cyanobacteria blooms. Harmful Algae 2020, 92, 101771. [Google Scholar] [CrossRef]
- Chia, M. A. , Bittencourt-Oliveira, M. do C. Allelopathic interactions between phytoplankton species alter toxin production, oxidative response, and nitrogen fixation. Hydrobiologia 2021, 848, 4623–4635. [Google Scholar] [CrossRef]
- Komárek, J. , Johansen, J. Coccoid Cyanobacteria. Freshwater Algae of NorthAmerica 2015, 75–133. [Google Scholar] [CrossRef]
- Zuo, Z. Why Algae Release Volatile Organic Compounds—The Emission and Roles. Frontiers in Microbiology 2019, 10. [Google Scholar] [CrossRef]
- Aloysio, Da. , Ferrao-Filho, S. Cyanobacteria: Ecology, Toxicology and Management. New York: Nova Science, USA, 2013, p. 225.
- Dembitskiy, V.M. Hydrocarbonic and fatty-acid components in the cultures of threadstalk cyanobacteria Scytonema sp., extracted from microbial community «Black Cover» of the limestone walls in Jerusalem. Biochem 2002, 11, 1545–1552. [Google Scholar]
- Kurashov, E.A. , Krylova, J.V., Mitrukova, G.G., Aleshina, D.G., Bataeva, Y.V., Astafyeva, O.V. Low-molecular weight metabolites in Spirodela polyrhiza (L.) Scheiden from Northwest Russia in the middle of the growing season. Ponte 2016, 72, 10–22. [Google Scholar] [CrossRef]
- Zuo, S. , Wang, H., Gan, L. D., Shao, M. Allelopathy appraisal of worm metabolites in the synergistic effect between Limnodrilus hoffmeisteri and Potamogeton malaianus on algal suppression. Ecotoxicology and Environmental Safety 2019, 182, 109482. [Google Scholar] [CrossRef]
- Netrusov, A.I. , Egorova, M.A., Zakharchuk, L.M. et al. Practical Course of Microbiology: Tutorial for Higher Education Establishments, Moscow: Akademia, Russian Federation, 2005; p. 352.
- Chudina, A.I. , Sharipov, V.I., Kuznrtsov, B.N. Chromatography-mass spectrometric Study of chemical composition of neutral fraction of pine bark hexane extract. J. of Siberian federal university. Chem 2011, 4, 350–355. [Google Scholar]
- Zellner, B.A. , Bicchi, C., Dugo, P., Rubiolo, P., Dugo, G., Mondello, L. Linear retention indices in gas chromatographic analysis: a review. Flavour Fragr. J 2008, 23, 297–314. [Google Scholar] [CrossRef]
- Jaccard, P. Distribution de la flore alpine dans le Bassin des Dranses et dans quelques regions voisines. Bull Soc Vaudoise Sci Natur 1901, 37, 241–272. [Google Scholar]
- Czekanowski, J. Coefficient of racial likeness and durchschnittliche. Differenz Anthropol Anz 1922, 9, 227–249. [Google Scholar]
- Sorensen, T.A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter 1948, 5, 1–34. [Google Scholar]
- Gollerbakh, M.M. , Kosinskaya, E.K., Polyanskiy, V.I. The indicator of freshwater algae of the USSR. Moscow: Sov. Nauka, USA, 1953, 665.
- Komárek, J.K. Anagnostidis Cyanoprokaryota 2. teil. 2nd part: Oscillatoriales. Berlin: Elsevier/Spektrum, Germany, 2007; Volume 2, P. 759.
- Veerapagu, M. , Sankara Narayanan, A., Ponmurugan, K., Jeya, K.R. Screening selection identification production and optimization of bacterial lipase from oil spilled soil. Asian J Pharm Clin Res 2013, 6, 62–67. [Google Scholar]
- Jinhua, Z. , Liping, Z. Improvement of an Isolation Medium for Actinomycetes. Modern Applied Science 2011, 5, 124–127. [Google Scholar]
- Bustamante, V.H. , Martinez-Flores, I, Vlamakis, H.C.,Zusman, D.R. Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C-terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals. Mol Microbiol 2004, 53, 1501–1513. [Google Scholar] [CrossRef]
- Goldin, E.B. , Goldina, V. G. Ecological-biological meaning of terpenes and their application: methodological aspects. Ecosyst, Their Improv Prot 2001, 4, 104–111. [Google Scholar]
- Amsler, C. Algal chemical ecology. Ed. by Amsler C. 2008. Berlin-London: Springer, p. 314.
- Plemenkov, V.V. Chemistry of isoprenoids: Tutorial. Kaliningrad: Publishing House of Altayskiy University, Russian Federation, 2007; P. 320.
- Kurashov, E.A. , Kryilova, J.V., Mitrukova, G.G. The composition of volatile low-molecular organic matters Ceratophyllum demersum L.in fructification. Water: Chem Ecol 2012, 6, 104–111. [Google Scholar]
- Samusenko, A.L. Capillary gas chromatography study of antioxidant activity of lemon, rose grapefruit, coriander, clove oils and their mixtures. Chem Herbal Raw Mater 2011, 3, 107–112. [Google Scholar]
- Gorbunova, E.V. Technological peculiarities of fennel integrated intact plant utilization. Equip Technol Food Prod 2013, 3, 9–15. [Google Scholar]
- Golovanov, V.A. , Abramova, A.S., Sumskaya, O.P. Herbal medical products use for providing antimicrobial properties to textiles. East-Eur J Adv Technol 2011, 6, 6–9. [Google Scholar]
- Xiao, J. , Sarker D.S., Asakawa, Y. Handbook of Dietary Phytochemicals. Springer Nature Singapore Pte Ltd., 2021. p. 1954. [CrossRef]
- Xu, Q. , Yang, L., Yang, W., Bai, Y., Hou, P., Zhao, J., Zhou L., Zuo, Z. Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris. Ecotoxicology and Environmental Safety 2017, 135, 191–200. [Google Scholar] [CrossRef]
- Vukovic, N. , Sukdolak, S., Solujic, S., Niciforovic, N. Antimicrobial activity of the essential oil obtained from roots and chemical composition of the volatile constituents from the roots, stems, and leaves of Ballota nigra from Serbia. J Med Food 2009, 12, 435–441. [Google Scholar] [CrossRef]
- Lanciotti, R. , Beletti, N. , Patrignani, F., Gianotti, A., Gardini, F., Guerzoni, M.E. Application of Hexanal, (E)-2-Hexenal, and Hexyl Acetate to Improve the Safety of Fresh-Sliced. Apples J Agric Food Chem 2003, 51, 2958–2963. [Google Scholar] [CrossRef]
- Heise, S. , Litz, N. Germ. Fed. Environ Phthalates. Agency, 2004, p. 40.
- Xuan, T.D. , Chung, M., Khanh, T.D., Tawata, S. Identification of Phytotoxic Substances from Early growth of barnyard grass (Echinochloa crusgalli) root exudates. J Chem Ecol 2006, 32, 895–906. [Google Scholar] [CrossRef]
- Kurashov, E.A. , Kryilova, J.V., Mitrukova, G.G. The dynamics of Potamogeton pusillus (Potamogetonaceae) sprouts oil composition in vegetation period. Plant Resour 2013, 49, 85–102. [Google Scholar]
- Kirpenko, N.I. , Kurashov, E.A., Kryilova, J.V. Exometabolites composition in the culture of some algae. Hydrob J. 2012, 48, 65–77. [Google Scholar] [CrossRef]
- Bataeva, Y.V. , Grigoryan, L.N., Kurashov, E.A., Krylova, J.V., Fedorova, E.V., Iavid, E.J., Khodonovich, V.V., Yakovleva, L.V. Study of metabolites of Streptomyces carpaticus RCAM04697 for the creation of environmentally friendly plant protection products. Theoretical and Applied Ecology 2021, 3, Р. 172–178 http://. [Google Scholar] [CrossRef]
- Rezanka, T. , Zahradník, J., Podojil, M. Hydrocarbons in green and blue-green algae. Folia Microbiol (Praha) 1982, 27, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Dembitskiy, V. , Dor, I., Shkrob, I., Aki, M. Branched alkanes and other nonpolar compounds produced by Cyanobacterium Microcoleus vaginatus from the Negev Desert. Bioorganic Chem 2001, 27, 130–140. [Google Scholar]
- Samadi, N. , Manayi, A., Vazirian, M., Samadi, M., Zeinalzadeh, Z., Saghari, Z., Abadian, N., Mozaffarian, V.O., Khanavi, M. Chemical composition and antimicrobial activity of the essential oil of Anthemis altissima L. var. altissima. Nat Prod Res 2012, 26, 1931–1934. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.J. , Grice, D., Tiralongo, E. Evaluation of cytotoxic activity of patriscabratine, tetracosane and various flavonoids isolated from the Bangladeshi medicinal plant Acrostichum aureum. Pharm Biol 2012, 50, 1276–1280. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q. , Xu,W.H. Analysis of chemical composition of Salvia miltiorrhiza flower by GC-MS. Zhong Yao Cai 2012, 35, 74–77. [Google Scholar] [PubMed]
- Eun-Soo, P. , Woong-Sig, M., Min-Jin, S., Mal-Nam, K., Kyoo-Hyun, C., Jin-San, Y. Antimicrobial activity of phenol and benzoic acid derivatives. Int Biodeterior Biodegradat 2001, 47, 209–214. [Google Scholar]
- Drăcea, O. , Larion, C., Chifiriuc, M.C., Raut, I., Limban, C., Niţulescu, G.M., Bădiceanu, C.D., Israil, A.M. New thioureides of 2-(4-methylphenoxymethyl) benzoic acid with antimicrobial activity. Roum Arch Microbiol Immunol 2008, 67, 92–97. [Google Scholar]
- Jiang, X.F. , Zuo, S.P., Ye, L.T., Hong, W.X. Nanofumed silica as a novel pollutant that inhibits the algicidal effect of p-hydroxybenzoic acid on Microcystis aeruginosa. Environ. Technol 2019, 40, 693–700. [Google Scholar] [CrossRef]
- Zhao, M. , Chen, X., Ma, N., Zhang, Q., Qu, D., & Li, M. Overvalued allelopathy and overlooked effects of humic acid-like substances on Microcystis aeruginosa and Scenedesmus obliquus competition. Harmful Algae 2018, 78, 18–26. [Google Scholar] [CrossRef]
- Ozpinar, H. , Dag, S., Yigit, E. Alleophatic effects of benzoic acid, salicylic acid and leaf extract of Persica vulgaris Mill. (Rosaceae). South African Journal of Botany 2017, 108, 102–109. [Google Scholar] [CrossRef]
- Lyutikova, M.N. The study of composition of bioactive agents of wild berries Vaccinium vitis-idaea, Oxycoccus palustris depending on their ripeness level and storage conditions. Synopsis Cand Sci (Chem) thesis, 2013, P.25.
- Chehregani, A. , Atri, M., Yousefi, S., Albooyeh, Z., Mohsenzadeh, F. Essential oil variation in the populations of Artemisia spicigera from northwest of Iran: chemical composition and antibacterial activity. Pharm Biol 2013, 51, 246–252. [Google Scholar] [CrossRef]
- Mohsenzadeh, F. , Chehregani, A., Amiri, H. Chemical composition, antibacterial activity and cytotoxicity of essential oils of Tanacetum parthenium in different developmental stages. Pharm Biol 2011, 49, 920–926. [Google Scholar] [CrossRef]
- Jiang, W.X. , Jia, Y., Wang, C.Y., Wang, Q., Tian, X.J. The inhibitory effects of palmitic acid and stearic acid on Microcystis aeruginosa J. Ecology and Environment Sciences 2010, 19, 291–295. [Google Scholar]
- Chen, G.Y. , Li, Q.S., Tang, K. Allelopathic effect of organic acids from Iris pseudacorus L. on Microcystis aeruginosa. Environmental Science & Technology (China) 2013, 36, 26–30. [Google Scholar]
- Gao, H. , Song, Y., Lv, C., Chen, X., Yu, H., Peng, J., Wang, M. The possible allelopathic effect of Hydrilla verticillata on phytoplankton in nutrient-rich water. Environ Earth Sci. 2015, 73, 5141–5151. [Google Scholar] [CrossRef]
- Kurashov, E. , J., Protopopova, E. The Use of Allelochemicals of Aquatic Macrophytes to Suppress the Development of Cyanobacterial “Blooms”. In Plankton Communities, Pereira, L., Gonçalves, A.M., Eds.; London: IntechOpen, Great Britain, 2021. [Google Scholar] [CrossRef]
- Dembitskiy, V.M. , Shkrob, I., Gou, I.V. Dicarboxylic and fatty acids of cyanobacteria of genus Aphanizomenon. Biochem 2001, 66, 92–97. [Google Scholar]
- Pozdnyakova, T.A. , Bubenchikov, R.A. The study of Siberian crane's-bill (Geranium sibiricum L.) oil. Basic Stud 2014, 3, 539–542. [Google Scholar]
- Kurashov, E.A. , Krylova, J.V., Mitrukova, G.G., Chernova, A.M. Low-molecular-weight metabolites of aquatic macrophytes growing on the territory of Russia and their role in hydroecosystems. Contemporary Problems of Ecology 2014, 7, 433–448. [Google Scholar] [CrossRef]
- Kurashov, E.A. , Mitrukova, G.G., Krylova, Yu.V. Interannual variability of low-molecular metabolite composition in Ceratophyllum demersum (Ceratophyllaceae) from a Floodplain lake with a changeable trophic status. Contemporary Problems of Ecology 2018, 11, 179–194. [Google Scholar] [CrossRef]
- Nakai, S. , Yamada, S., Hosomi, M. Anti-cyanobacterial fatty acids released from Myriophyllum spicatum. Hydrobiol 2005, 543, 71–78. [Google Scholar] [CrossRef]
- Kurbatova, S. , Berezina, N., Sharov, A., Chernova, E., Kurashov, E., Krylova, Y., Yershov, I., Mavrin, A., Otyukova, N., Borisovskaya, E., Fedorov, R. Effects of Algicidal Macrophyte Metabolites on Cyanobacteria, Microcystins, Other Plankton, and Fish in Microcosms. Toxins 2023, 15, 529. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P. , Lee, J.-H., Beyenal, H., Lee, J. Fatty Acids as Antibiofilm and Antivirulence Agents. Trends in Microbiology 2020, 28, 753–768. [Google Scholar] [CrossRef] [PubMed]
- Pratsinis, H. , Kletsas, D., Melliou, E. Chinou Antiproliferative activity of Greek propolis. J Med Food 2010, 13, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.B. , de Souza, M.G., Moreira, M.A., Moreira, M.R., Furtado, N.A., Martins, C.H., Bastos, J.K., dos Santos, R.A., Heleno, V.C., Ambrosio, S.R., Veneziani, R.C. Antimicrobial evaluation of diterpenes from Copaifera langsdorffii oleoresin against periodontal anaerobic bacteria. Molecul 2011, 18, 9611–9619. [Google Scholar] [CrossRef]
- de Oliveira, P.F. , Munari, C.C., Nicolella, H.D., Veneziani, R.C., Tavares, D.C. Manool, a Salvia officinalis diterpene, induces selective cytotoxicity in cancer cells. Cytotechnology 2016, 68, 2139–2143. [Google Scholar] [CrossRef]
- Kostin, A.M. , Korneev, I.S., Romanova, A.V., Cuchkov, U.P., Shvets, V.F. The production of vehicle fuel from fatty acids. Adv Chem Chem Technol 2008, 6, 50–53. [Google Scholar]
- Bataeva, Y.V. , Dzerzhinskaya, I.S. Associants of cyanobacteria of genus Phormidium in high-mineralized basins of the Lower Volga. In Modern problems of physiology, ecology and biotechnology of microorganisms: All Russian symposium with international engagement, Moscow, MSU named after M.V. Lomonosov, Russian Federation, 24-27.12.2009.
| Sample 1 | Sample 2 | Sample 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Compound | Formula | RT | RI | % | C | % | C | % | C | |
| 1 | unidentified m/z 100 [M+], 55 (100) | 2.61 | 799 | 3.65 | 0.0085 | |||||
| 2 | octane | C8H18 | 2.68 | 800 | 7.09 | 0.0165 | ||||
| 3 | hexan-3-one | C6H12O | 2.73 | 803 | 8.06 | 0.0057 | 1.86 | 0.0047 | ||
| 4 | hexan-2-one | C6H12O | 2.91 | 809 | 4.03 | 0.0102 | ||||
| 5 | hexan-2-ol | C6H14O | 2.94 | 811 | 3.21 | 0.0023 | ||||
| 6 | hexan-3-ol | C6H14O | 3.02 | 813 | 0.61 | 0.0016 | ||||
| 7 | unidentified m/z 86 [M+], 86 (100) | 3.4 | 827 | 3.99 | 0.0093 | |||||
| 8 | unidentified m/z 98 [M+], 56 (100) | 3.89 | 845 | 1.17 | 0.0027 | 0.42 | 0.0011 | |||
| 9 | (E)-hex-2-enal | C6H10O | 3.92 | 846 | 0.29 | 0.0007 | ||||
| 10 | 3-methylcyclopentan-1-one | C6H10O | 3.93 | 846 | 2.75 | 0.0019 | ||||
| 11 | 2-(2-methylpentan-2-yl)oxirane | C8H16O | 4.06 | 851 | 0.79 | 0.002 | ||||
| 12 | hexane-2,4-dione | C6H10O2 | 5.05 | 887 | 0.53 | 0.0014 | ||||
| 13 | oct-1-en-3-one | C8H14O | 5.25 | 894 | 0.85 | 0.0021 | ||||
| 14 | 5-methoxy-2-methylpentan-2-ol | C7H16O2 | 6.12 | 915 | 5.74 | 0.004 | ||||
| 15 | methyl (E)-5-methoxypent-3-enoate | C7H12O3 | 6.25 | 918 | 3.03 | 0.0077 | ||||
| 16 | 3-methylpentane-3-thiol | C6H14S | 6.7 | 928 | 4.2 | 0.0098 | ||||
| 17 | (5 E)-2-methylhepta-2,5-dien-4-ol | C8H14O | 6.73 | 929 | 3.47 | 0.0088 | ||||
| 18 | (E)-3,7-dimethyloct-2-ene | C10H20 | 7.33 | 941 | 7.14 | 0.0181 | ||||
| 19 | 2,3-dimethyloct-2-ene | C10H20 | 9.39 | 986 | 1.71 | 0.0043 | ||||
| 20 | 5-ethyl-2,4-dimethylhept-2-ene | C11H22 | 9.98 | 999 | 2.11 | 0.0049 | 1.55 | 0.0039 | ||
| 21 | (E)-hept-2-enal | C7H12O | 9.99 | 999 | 12.84 | 0.009 | ||||
| 22 | 5-methylheptan-1-ol | C8H18O | 10.11 | 1001 | 2.41 | 0.0056 | ||||
| 23 | 3-ethyl-5-methylhept-1-yn-3-ol | C10H18O | 10.19 | 1003 | 1.58 | 0.004 | ||||
| 24 | 2,2,3,3,4,4-hexamethyloxolane | C10H20O | 10.61 | 1010 | 0.59 | 0.0015 | ||||
| 25 | 1-methyl-4-prop-1-en-2-ylcyclohexene | C10H16 | 11.29 | 1021 | 19.71 | 0.0139 | ||||
| 26 | (E)-3-methyldec-4-ene | C11H22 | 11.36 | 1022 | 2.2 | 0.0056 | ||||
| 27 | pentylcyclopentane | C10H20 | 11.81 | 1030 | 0.6 | 0.0015 | ||||
| 28 | (E)-3-methyldec-3-ene | C11H22 | 12.12 | 1035 | 0.24 | 0.0006 | ||||
| 29 | 3,7-dimethylnonane | C11H24 | 12.46 | 1040 | 0.78 | 0.002 | ||||
| 30 | 1-butyl-1-methyl-2-propylcyclopropane | C11H22 | 12.89 | 1048 | 0.63 | 0.0016 | ||||
| 31 | (Z)-3-methyldec-2-ene | C11H22 | 15.1 | 1085 | 0.89 | 0.0022 | ||||
| 32 | 1-nonylaziridine | C11H23N | 17.1 | 1114 | 4.5 | 0.0032 | ||||
| 33 | (Z)-9-methylundec-2-ene | C12H24 | 17.15 | 1114 | 4.16 | 0.0106 | ||||
| 34 | 1,7,7-trimethylbicyclo[2.2.1]heptan-3-one | C10H16O | 18.45 | 1131 | 0.83 | 0.0019 | ||||
| 35 | 1-(1,2,2,3-tetramethylcyclopentyl)ethanone | C11H20O | 20.9 | 1162 | 1.21 | 0.0031 | ||||
| 36 | dodec-1-ene | C12H24 | 22.76 | 1186 | 0.91 | 0.0023 | ||||
| 37 | benzoic acid | C7H6O2 | 23.33 | 1193 | 12.05 | 0.028 | ||||
| 38 | dodecane | C12H26 | 23.83 | 1200 | 2.68 | 0.0019 | 2.2 | 0.0051 | ||
| 39 | 5-ethylnonan-2-ol | C11H24O | 24.64 | 1210 | 1.11 | 0.0028 | ||||
| 40 | 1,2,4,5-tetraethylcyclohexane | C14H28 | 27.8 | 1251 | 0.5 | 0.0013 | ||||
| 41 | 2-methyltridecane | C14H30 | 37.41 | 1397 | 7.32 | 0.017 | ||||
| 42 | 3-methyltridecane | C14H30 | 37.5 | 1398 | 0.88 | 0.0022 | ||||
| 43 | tetradecane | C14H30 | 37.56 | 1399 | 2.07 | 0.0015 | 1.03 | 0.0024 | ||
| 44 | tetradec-1-ene | C14H28 | 38.46 | 1421 | 1.21 | 0.0031 | ||||
| 45 | 3-methyltetradecane | C15H32 | 39.37 | 1444 | 0.72 | 0.0018 | ||||
| 46 | 2-methylpentadecane | C16H34 | 45.85 | 1597 | 0.31 | 0.0008 | ||||
| 47 | undecylcyclopentane | C16H32 | 47.73 | 1652 | 0.52 | 0.0013 | ||||
| 48 | 2-methylheptadecane | C18H38 | 50.57 | 1741 | 0.34 | 0.0009 | ||||
| 49 | tetradecanoic acid | C14H28O2 | 51.29 | 1765 | 0.57 | 0.0013 | ||||
| 50 | 3-methyloctadecane | C19H40 | 52.24 | 1797 | 0.38 | 0.001 | ||||
| 51 | ethylpentadecylketone | C18H36O | 54 | 1860 | 0.15 | 0.0004 | ||||
| 52 | (E)-8-methylheptadec-8-ene | C18H36 | 54.12 | 1864 | 0.78 | 0.0006 | ||||
| 53 | 5-heptadecenal | C17H32O | 54.15 | 1865 | 0.21 | 0.0005 | ||||
| 54 | bis(2-methylpropyl)benzene-1,2-dicarboxylate | C16H22O4 | 54.3 | 1871 | 2.27 | 0.0016 | 0.79 | 0.0018 | 0.22 | 0.0006 |
| 55 | (Z)-nonadec-5-ene | C19H38 | 55.38 | 1920 | 0.17 | 0.0004 | ||||
| 56 | dibutyl benzene-1,2- dicarboxylate | C16H22O4 | 55.9 | 1959 | 3.93 | 0.0028 | 0.68 | 0.0016 | 0.37 | 0.0009 |
| 57 | hexadecanoic acid | C16H32O2 | 56.02 | 1968 | 0.95 | 0.0022 | ||||
| 58 | 3-methylicosane | C21H44 | 56.43 | 1998 | 1.98 | 0.0014 | 0.16 | 0.0004 | 0.88 | 0.0022 |
| 59 | ethenyl hexadecanoate | C18H34O2 | 56.46 | 2001 | 0.45 | 0.0011 | 0.91 | 0.0023 | ||
| 60 | (3R)-5-[(1S,4as,8as)-5,5,8a-trimethyl-2-methylidene-3,4,4a,6,7,8-hexahydro-1H-naphthalen-1-yl]-3-methylpent-1-en-3-ol | C20H34O | 56.87 | 2044 | 0.64 | 0.0015 | ||||
| 61 | unidentified m/z 290 [M+], 83 (100) | 56.98 | 2056 | 0.62 | 0.0004 | |||||
| 62 | eicosan-2-ol | C20H42O | 57.05 | 2063 | 1.51 | 0.0011 | ||||
| 63 | (E)-4-methylnonadec-4-ene | C20H40 | 57.05 | 2063 | 0.48 | 0.0011 | ||||
| 64 | unidentified m/z 347 [m+], 347 (100) | 57.3 | 2089 | 0.2 | 0.0005 | |||||
| 65 | henicosane | C21H44 | 57.39 | 2100 | 0.48 | 0.0011 | ||||
| 66 | docosane | C22H46 | 58.15 | 2200 | 1.69 | 0.0039 | ||||
| 67 | unidentified m/z 295 [m+], 71 (100) | 58.18 | 2200 | 1.05 | 0.0027 | |||||
| 68 | unidentified m/z 320[M+], 95 (100) | 58.25 | 2210 | 5.75 | 0.004 | |||||
| 69 | unidentified m/z 295 [m+], 83 (100) | 58.59 | 2260 | 0.49 | 0.0012 | |||||
| 70 | unidentified m/z 322 [M+], 69 (100) | 58.6 | 2262 | 1.72 | 0.0012 | |||||
| 71 | docos-1-ene | C22H44 | 58.63 | 2266 | 4.33 | 0.003 | ||||
| 72 | tricosane | C23H48 | 58.82 | 2300 | 2.31 | 0.0054 | 0.45 | 0.0012 | ||
| 73 | unidentified m/z ? [m+], 347 (100) | 58.9 | 2306 | 1.22 | 0.0028 | |||||
| 74 | unidentified m/z 347 [M+], 83 (100) | 58.91 | 2308 | 3.91 | 0.0028 | |||||
| 75 | tetracosane | C24H50 | 59.44 | 2400 | 5.33 | 0.0124 | ||||
| 76 | unidentified m/z ? [m+], 81 (100) | 59.45 | 2395 | 1.31 | 0.0033 | |||||
| 77 | unidentified m/z 334 [M+], 44 (100) | 59.48 | 2400 | 5.45 | 0.0038 | |||||
| 78 | 2-methyltricosane | C24H50 | 59.5 | 2403 | 0.82 | 0.0021 | ||||
| 79 | pentacosane | C25H52 | 60.09 | 2500 | 6.27 | 0.0146 | ||||
| 80 | unidentified m/z 352 [m+], 71 (100) | 60.09 | 2493 | 2.61 | 0.0066 | |||||
| 81 | unidentified m/z 325[M+], 44 (100) | 60.33 | 2523 | 2.54 | 0.0018 | |||||
| 82 | bis(2-ethylhexyl) benzene-1,2-dicarboxylate | C24H38O4 | 60.44 | 2537 | 3.65 | 0.0026 | 1.18 | 0.0027 | 2.1 | 0.0053 |
| 83 | hexacosane | C26H54 | 60.89 | 2600 | 6.43 | 0.015 | 1.48 | 0.0038 | ||
| 84 | unidentified m/z 426 [m+], 191 (100) | 61.46 | 2647 | 5.96 | 0.0151 | |||||
| 85 | heptacosane | C27H56 | 61.94 | 2700 | 7.27 | 0.0169 | 4.78 | 0.0121 | ||
| 86 | octacosane | C28H58 | 63.26 | 2800 | 5.06 | 0.0118 | 23.78 | 0.0603 | ||
| 87 | nonacosane | C29H60 | 65.07 | 2900 | 5.52 | 0.0128 | ||||
| 88 | unidentified m/z 441 [m+], 97 (100) | C20H28O6 | 65.1 | 2893 | 6.02 | 0.0153 | ||||
| 89 | triacontane | C30H62 | 67.39 | 3000 | 4.47 | 0.0104 | ||||
| TOTAL | 100 | 0.071 | 100 | 0.233 | 100 | 0.254 | ||||
| Sample 1 | Sample 2 | Sample 3 | |
| Sample 1 | х | 0.13 | 0.07 |
| Sample 2 | 0.22 | х | 0.15 |
| Sample 3 | 0.13 | 0.26 | x |
| Nutritious medium | Number of microorganisms (CUE/ml) and dominating morphotypes in the sample | ||
| №1 | №2 | №3 | |
| NA | 2,0×102 Gram-negative bacilli and cocci |
2,4×102 Gram-positivebacilli |
1,5×102 Gram-positivebacilli |
| NA /10 | 4,6×102 Gram-negative bacilli |
1,2×102 Gram-positivecocci |
2,6×102 Gram-negative bacilli Gram-positive streptococci |
| NA /100 | 0,7×102 Gram-negative bacilli |
0,9×102 Gram-negative bacilli |
2,0×102 Gram-positivestreptococci |
| Starvation agar | 0,7×102 Gram-negative bacilli |
1,8×102 Gram-positivebacilli |
0,1×102 Gram-positivebacilli |
| Saliber’s | 0,6×102 Gram-negative bacilli |
1,2×102 Gram-negative bacilli |
2,7×102 Gram-negative bacilli |
| Gause’s | 0,1×10 Cladosporium |
0,2×10 Pigmented micromycetes |
0,5×102 Gram-positive bacilli and cocci Actinomycetes- based |
| Czapek’s | 0,1×10 Fusarium MyceliaSterilia |
0,1×10 Alternaria |
0,2×102 unidentified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).