Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Dynamic Behavior Modeling of Natural Rubber/Polybutadiene Rubber-Based Hybrid Magnetorheological Elastomer Sandwich Composite Structures

Version 1 : Received: 19 October 2023 / Approved: 19 October 2023 / Online: 20 October 2023 (07:53:25 CEST)

A peer-reviewed article of this Preprint also exists.

N, A.; Jakkamputi, L.P.; Gnanasekaran, S.; Thangamuthu, M.; Rakkiyannan, J.; Bhalerao, Y.J. Dynamic Behavior Modeling of Natural-Rubber/Polybutadiene-Rubber-Based Hybrid Magnetorheological Elastomer Sandwich Composite Structures. Polymers 2023, 15, 4583. N, A.; Jakkamputi, L.P.; Gnanasekaran, S.; Thangamuthu, M.; Rakkiyannan, J.; Bhalerao, Y.J. Dynamic Behavior Modeling of Natural-Rubber/Polybutadiene-Rubber-Based Hybrid Magnetorheological Elastomer Sandwich Composite Structures. Polymers 2023, 15, 4583.

Abstract

This study investigates the dynamic characteristics of Natural Rubber (NR)/Polybutadiene Rubber (PBR) based hybrid magnetorheological elastomer (MRE) sandwich composite beams through numerical simulations and finite element analysis, employing Reddy's third-order shear defor-mation theory. Four distinct hybrid MRE sandwich configurations were examined. The validity of finite element simulations was confirmed by comparing them with results from magnetorheo-logical (MR) fluid-based composites. Further, parametric analysis explored the influence of magnetic field intensity, boundary conditions, ply orientation, and core thickness on beam vi-bration responses. Results reveal a notable 10.4% enhancement in natural frequencies in SC4-based beams under a 600mT magnetic field with clamped-free boundary conditions, attributed to in-creased PBR content in MR elastomer cores. However, higher magnetic field intensities result in slight frequency decrements due to filler particle agglomeration. Additionally, augmenting magnetic field intensity and magnetorheological content under clamped-free conditions improves the loss factor by 66% to 136%, presenting promising prospects for advanced applications. This research contributes to a comprehensive understanding of dynamic behavior and performance enhancement in hybrid MRE sandwich composites, holding significant implications for engi-neering applications. Furthermore, this investigation provides valuable insights into the intricate interplay between magnetic field effects, composite architecture, and vibration response.

Keywords

hybrid MRE; sandwich structures; smart structures; dynamic behavior modeling; vibration; polymer composites

Subject

Engineering, Aerospace Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.