Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

High-Performance FAU Zeolite Membranes Derived from Nano-Seeds for Gas Separation

Version 1 : Received: 17 October 2023 / Approved: 18 October 2023 / Online: 19 October 2023 (04:40:36 CEST)

A peer-reviewed article of this Preprint also exists.

Wang, Q.; Chen, H.; He, F.; Liu, Q.; Xu, N.; Fan, L.; Wang, C.; Zhang, L.; Zhou, R. High-Performance FAU Zeolite Membranes Derived from Nano-Seeds for Gas Separation. Membranes 2023, 13, 858. Wang, Q.; Chen, H.; He, F.; Liu, Q.; Xu, N.; Fan, L.; Wang, C.; Zhang, L.; Zhou, R. High-Performance FAU Zeolite Membranes Derived from Nano-Seeds for Gas Separation. Membranes 2023, 13, 858.

Abstract

In this study, high-performance FAU (NaY type) zeolite membranes were successfully synthesized using small-sized seeds of 50 nm, and their gas separation performance was systematically evaluated. Employing nano-sized NaY seeds and an ultra-dilute reaction solution with a molar composition of 80 Na2O: 1Al2O3: 19 SiO2: 5000H2O, the effects of synthesis temperature, crystallization time, and porous support (α-Al2O3 or mullite) on the formation of FAU membranes were investigated. The results illustrated that further extending the crystallization time or increasing the synthesis temperature led to the formation of a NaP impurity phase on the FAU membrane layer. The most promising FAU membrane with a thickness of 2.7 µm was synthesized on an α-Al2O3 support at 368 K for 8 h, and had good reproducibility. The H2 permeance of the membrane was as high as 5.34×10-7 mol/(m2 s Pa), and the H2/C3H8 and H2/i-C4H10 selectivities were 183 and 315, respectively. The C3H6/C3H8 selectivity of the membrane was as high as 46 with a remarkably high C3H6 permeance of 1.35× 10-7 mol/(m2 s Pa). The excellent separation performance of the membrane is mainly attributed to the thin, defect-free membrane layer and relatively wide pore size (0.74 nm).

Keywords

FAU membrane; zeolite; secondary growth; gas separation; propylene propane separation; H2/C3H8 separation

Subject

Chemistry and Materials Science, Surfaces, Coatings and Films

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.