Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

NanoBubble-mediated Oxygenation: Elucidating the Underlying Molecular Mechanisms in Hypoxia and Mitochondrial-related Pathologies

Version 1 : Received: 14 October 2023 / Approved: 16 October 2023 / Online: 16 October 2023 (11:09:22 CEST)

A peer-reviewed article of this Preprint also exists.

Viafara Garcia, S.M.; Khan, M.S.; Haidar, Z.S.; Acevedo Cox, J.P. NanoBubble-Mediated Oxygenation: Elucidating the Underlying Molecular Mechanisms in Hypoxia and Mitochondrial-Related Pathologies. Nanomaterials 2023, 13, 3060. Viafara Garcia, S.M.; Khan, M.S.; Haidar, Z.S.; Acevedo Cox, J.P. NanoBubble-Mediated Oxygenation: Elucidating the Underlying Molecular Mechanisms in Hypoxia and Mitochondrial-Related Pathologies. Nanomaterials 2023, 13, 3060.

Abstract

Worldwide, hypoxia-related conditions, including cancer, COVID-19, and neuro-degenerative diseases, often lead to multi-organ failure and significant mortality. Oxygen, crucial for cellular function, becomes scarce as levels drop below 10 mmHg (<2% O2), triggering mitochondrial dysregulation and activating hypoxia-induced factors (HiFs). Herein, Oxygen nanoBubbles (OnB), an emerging versatile oxygen de-livery platform, implies to offer a novel approach to address hypoxia-related pathologies. This review explores OnB oxygen delivery strategies and systems, including diffusion, ultrasound, photodynamic, and pH-responsive nanobubbles. It delves into the nanoscale mechanisms of OnB, elucidating their role in mitochondrial metabolism (TFAM, PGC1alpha), hypoxic responses (HiF-1alpha), and their interplay in chronic pathologies including cancer and neurodegenerative disorders, amongst others. By understanding these dynamics and underlying mechanisms, this article aims to contribute to our accruing knowledge of OnB and the developing potential in ameliorating hypoxia- and metabolic stress-related conditions and fostering innovative therapies.

Keywords

oxygen; nanobubbles; hypoxia; mitochondria; metabolism, molecular; drug delivery; cancer, stress; innovation

Subject

Medicine and Pharmacology, Medicine and Pharmacology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.