Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Influence of Energetic Particles and Electron Injection on Minority Carrier Transport Properties in Gallium Oxide

Version 1 : Received: 13 October 2023 / Approved: 13 October 2023 / Online: 16 October 2023 (05:43:57 CEST)

How to cite: Modak, S.; Ruzin, A.; Schulte, A.; Chernyak, L. Influence of Energetic Particles and Electron Injection on Minority Carrier Transport Properties in Gallium Oxide. Preprints 2023, 2023100914. https://doi.org/10.20944/preprints202310.0914.v1 Modak, S.; Ruzin, A.; Schulte, A.; Chernyak, L. Influence of Energetic Particles and Electron Injection on Minority Carrier Transport Properties in Gallium Oxide. Preprints 2023, 2023100914. https://doi.org/10.20944/preprints202310.0914.v1

Abstract

The influence of various energetic particles and electron injection on transport of minority carriers and non-equilibrium carrier recombination in Ga2O3 is summarized in this review. In Ga2O3 semiconductor, if robust p-type material and bipolar structures become available, diffusion length of minority carriers will be of critical significance. Diffusion length of minority carriers dictates functionality of such electronic devices as diodes, transistors, and detectors. One of the problems in ultra-wide band gap materials technology, is the short carrier diffusion length, due to scattering on extended defects. Electron injection in n- and p-type Gallium Oxide results in a significant increase of the diffusion length, even after its deterioration due to exposure to alpha- and proton-irradiation. Furthermore, post electron injection diffusion length in irradiated material exceeds that in Ga2O3 prior to irradiation and injection. The root cause of the electron injection-induced effect is attributed to the increase of minority carrier lifetime in the material due to trapping of non-equilibrium electrons on native point defects. It is, therefore, concluded that the electron injection is capable of “healing” the adverse impact of radiation in Ga2O3 and can be used for control of minority carrier transport and, therefore, device performance.

Keywords

Gallium Oxide; transport properties; minority carriers

Subject

Physical Sciences, Applied Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.