Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Reactive Molecular Dynamics Simulations of Polystyrene Pyrolysis

Version 1 : Received: 10 October 2023 / Approved: 10 October 2023 / Online: 11 October 2023 (17:25:09 CEST)

A peer-reviewed article of this Preprint also exists.

Li, C.; Yang, Z.; Wu, X.; Shao, S.; Meng, X.; Qin, G. Reactive Molecular Dynamics Simulations of Polystyrene Pyrolysis. Int. J. Mol. Sci. 2023, 24, 16403. Li, C.; Yang, Z.; Wu, X.; Shao, S.; Meng, X.; Qin, G. Reactive Molecular Dynamics Simulations of Polystyrene Pyrolysis. Int. J. Mol. Sci. 2023, 24, 16403.

Abstract

Polymers' controlled pyrolysis is an economical and environmentally friendly solution to prepare activated carbon. However, due to the experimental difficulty in measuring the dependence between tissues and pyrolysis parameters at high temperatures, the unknown pyrolysis mechanism hinders access to the target products with desirable morphologies and performances. In this study, we investigate the pyrolysis process of polystyrene under different heating rates and temperatures employing reactive molecular dynamics (ReaxFF-MD) simulations. A clear profile of the generation of pyrolysis products determined by the temperature and heating rate is constructed. It is found that the heating rate affects the type and amount of pyrolysis intermediates and their timing, and low-rate heating helps yield more diverse pyrolysis intermediates. While the temperature affects the pyrolytic tissues of the final equilibrium products, either too low or too high a target temperature is detrimental to generating large areas of graphitized tissue. The established theoretical evolution process matches experiments well, thus contributing to preparing target activated carbons by referring to the regulatory mechanism of pyrolytic tissues.

Keywords

Polystyrene; Activated carbon; Pyrolysis; Reactive molecular dynamics

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.