Submitted:
28 September 2023
Posted:
10 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Data and methods
2.1. Data
2.2. Methods
2.2.1. Built-up area expansion
2.2.2. Urban population growth
2.2.3. Urban greening in built-up areas
3. Research results
3.1. Urban expansion
3.2. Urban population change
3.3. Urban greening changes

3.4. People living in greening BUAs
4. Discussion and conclusions
References
- Mackinder, H.J. The geographical pivot of history. 1904. Royal Geographical Society.
- Baskaran, A., UNESCO science report: Towards 2030. Institutions and Economies, 2017: p. 125-127.
- Song, C., et al., Undertaking research on belt and road initiative from the geo-relation perspective. Geographical Research, 2018. 1: p. 3-19.
- Williams, J., C. Robinson, and S. Bouzarovski, China’s Belt and Road Initiative and the emerging geographies of global urbanisation. The Geographical Journal, 2020. 186(1): p. 128-140. [CrossRef]
- Liu, W., Scientific understanding of the Belt and Road Initiative of China and related research themes. Progress in Geography, 2015. 34(5): p. 538-544.
- Chen, M., et al., The impact of the Belt and Road Initiative on the pattern of the development of urbanization in China. Mountain Research, 2016. 34(5): p. 637-44.
- Liu, H., W. Yeerken, and C. Wang, Impacts of the Belt and Road Initiative on the spatial pattern of territory development in China. Progress in Geography, 2015. 34(5): p. 545-553.
- Jiang, W., et al., Application potentiality and prospects of nighttime light remote sensing in “the Belt and Road” initiative. J. Univ. Chin. Acad. Sci, 2017. 3: p. 296-303.
- Jia, L., et al., Monitoring water resources and water use from earth observation in the belt and road countries. Bulletin of Chinese Academy of Sciences, 2017. 32(Z1): p. 62-73.
- Yin, W., Integrating Sustainable Development Goals into the Belt and Road Initiative: Would It Be a New Model for Green and Sustainable Investment? Sustainability, 2019. 11(24): p. 6991. [CrossRef]
- World Bank. (2021). Global Economic Prospects. Washington, DC: World Bank.
- Sun, L., et al., Dramatic uneven urbanization of large cities throughout the world in recent decades. Nature Communications, 2020. 11(1): p. 5366. [CrossRef]
- Liu, H., et al., Spatio-temporal evolution of population and urbanization in the countries along the Belt and Road 1950–2050. Journal of Geographical Sciences, 2018. 28(7): p. 919-936. [CrossRef]
- Bird, J., M. Lebrand, and A.J. Venables, The Belt and Road Initiative: Reshaping economic geography in Central Asia? Journal of Development Economics, 2020. 144: p. 102441.
- Gong, P., et al., Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment, 2020. 236: p. 111510. [CrossRef]
- NASA LP DAAC, MOD12Q1. V006. NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota (https://lpdaac.usgs.gov), accessed June 19, 2018. [CrossRef]
- Jun, C., Y. Ban, and S. Li, Open access to Earth land-cover map. Nature, 2014. 514(7523): p. 434-434. [CrossRef]
- Didan, K., MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. Accessed 2021-12-20 from . [CrossRef]
- Alexandridis, T.K., G. Ovakoglou, and J.G. Clevers, Relationship between MODIS EVI and LAI across time and space. Geocarto International, 2020. 35(13): p. 1385-1399. [CrossRef]
- Tatem, A.J., WorldPop, open data for spatial demography. Scientific data, 2017. 4(1): p. 1-4. [CrossRef]
- Seto, K.C., R. Sánchez-Rodríguez, and M. Fragkias, The New Geography of Contemporary Urbanization and the Environment. Annual Review of Environment and Resources, 2010. 35(1): p. 167-194. [CrossRef]
- Manoli, G., et al., Magnitude of urban heat islands largely explained by climate and population. Nature, 2019. 573(7772): p. 55-60. [CrossRef]
- Vearey, J., et al., Urban health in Africa: a critical global public health priority. BMC Public Health, 2019. 19: p. NA. [CrossRef]
- Li, D., et al., Urban heat island: Aerodynamics or imperviousness? Science Advances, 2019. 5(4): p. eaau4299.
- Turner-Skoff, J.B. and N. Cavender, The benefits of trees for livable and sustainable communities. PLANTS, PEOPLE, PLANET, 2019. 1(4): p. 323-335. [CrossRef]
- Garrett, H.E. and R.S. Woodworth, Statistics in Psychology and Education, David McKay, New York, 1971. 1971.
- Liu, B., et al., Evaluating the disparity between supply and demand of park green space using a multi-dimensional spatial equity evaluation framework. Cities, 2022. 121: p. 103484. [CrossRef]
- Hong, W., R. Guo, and H. Tang, Potential assessment and implementation strategy for roof greening in highly urbanized areas: A case study in Shenzhen, China. Cities, 2019. 95: p. 102468. [CrossRef]
- WANG, C., et al., Quantitative analysis of the dynamic relationship between urbanization and ecological environment in Urumqi, Xinjiang. Arid Land Geography, 2014. 37(3): p. 609-619.
- Qian, G. and A. Kasimu, Research on the Urban Expansion of Xinjiang in China, Central Asia and West Asia along the Belt and Road. ECONOMIC GEOGRAPHY, 2017. 37(5): p. 51-57.
- Tellman, B., et al., Satellite imaging reveals increased proportion of population exposed to floods. Nature, 2021. 596(7870): p. 80-86. [CrossRef]
- Zhou, D., et al., Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China. Sci Total Environ, 2018. 628-629: p. 415-429. [CrossRef]
- Zhou, D., L. Zhang, and R. Wang, Administrative-Hierarchical Urban Land Expansion in China: Urban Agglomeration in the Yangtze River Delta. Journal of Urban Planning and Development, 2018. 144(4): p. 05018018. [CrossRef]
- Engemann, K., et al., Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proceedings of the National Academy of Sciences, 2019. 116(11): p. 5188-5193. [CrossRef]
- Seo, S., et al., Association between urban green space and the risk of cardiovascular disease: A longitudinal study in seven Korean metropolitan areas. Environment International, 2019. 125: p. 51-57. [CrossRef]
- Shepley, M., et al., The Impact of Green Space on Violent Crime in Urban Environments: An Evidence Synthesis. International Journal of Environmental Research and Public Health, 2019. 16(24): p. 5119. [CrossRef]
- Seto, K.C. and M. Fragkias, Quantifying Spatiotemporal Patterns of Urban Land-use Change in Four Cities of China with Time Series Landscape Metrics. Landscape Ecology, 2005. 20(7): p. 871-888. [CrossRef]




| Rank | City Name | Region | BUA in 2020 (km2) | BUAE (km2) | Urban population in 2000 (x104) | Urban population in 2020 (x104) | Urban population growth |
| 1 | Urumqi | Xinjiang, China | 362 | 134 | 151.3 | 316.7 | 165.4 |
| 2 | Almaty | Kazakhstan | 286 | 55 | 75.5 | 134.8 | 59.3 |
| 3 | Dushanbe | Tajikistan | 89 | 13 | 54.6 | 98.1 | 43.5 |
| 4 | Bishkek | Kyrgyzstan | 191 | 24 | 73.3 | 106.9 | 33.6 |
| 5 | Chimkent | Kazakhstan | 158 | 26 | 24.3 | 57.5 | 33.2 |
| 6 | Kashgar | Xinjiang, China | 50 | 36 | 16.5 | 41.2 | 24.7 |
| 7 | Ashkhabad | Turkmenistan | 69 | 7 | 24.5 | 44.8 | 20.4 |
| 8 | Nur Sultan | Kazakhstan | 159 | 82 | 4.4 | 24.0 | 19.6 |
| 9 | Korla | Xinjiang, China | 49 | 35 | 14.0 | 32.8 | 18.9 |
| 10 | Yining | Xinjiang, China | 46 | 20 | 20.9 | 39.4 | 18.5 |
| 11 | Shihezi | Xinjiang, China | 142 | 9 | 13.0 | 31.0 | 18.0 |
| 12 | Samarqand | Uzbekistan | 384 | 16 | 14.2 | 29.1 | 14.9 |
| 13 | Tashkent* | Uzbekistan | 38 | 31 | 32.0 | 44.7 | 12.7 |
| 14 | Hetian | Xinjiang, China | 49 | 28 | 6.8 | 18.5 | 11.7 |
| 15 | Karamay | Xinjiang, China | 21 | 5 | 5.0 | 16.7 | 11.7 |
| 16 | Yangiyul | Uzbekistan | 29 | 11 | 26.7 | 38.3 | 11.5 |
| 17 | Changji | Xinjiang, China | 63 | 47 | 20.8 | 31.4 | 10.5 |
| 18 | Aktau | Kazakhstan | 76 | 52 | 1.1 | 11.1 | 10.0 |
| Rank | City | Region | BUA in 2020 (km2) | BUAE (km2) | REVI of BUAs in 2020 | REVI of BUAs in 2000 |
| 1 | Karamay | Xinjiang, China | 49.1 | 28.4 | 0.75 | 0.93 |
| 2 | Korla | Xinjiang, China | 48.9 | 35.1 | 0.55 | 0.72 |
| 3 | Aksu | Xinjiang, China | 41.1 | 19.0 | 0.51 | 0.57 |
| 4 | Urumqi | Xinjiang, China | 361.8 | 133.9 | 0.50 | 0.61 |
| 5 | Kuitun | Xinjiang, China | 51.8 | 27.0 | 0.44 | 0.57 |
| 6 | Timirtau | Kazakhstan | 44.5 | 5.3 | 0.40 | 0.43 |
| 7 | Karaganda | Kazakhstan | 45.5 | 12.5 | 0.38 | 0.39 |
| 8 | Shihezi | Xinjiang, China | 45.6 | 20.1 | 0.31 | 0.45 |
| 9 | Ekibastuz | Kazakhstan | 134.9 | 14.9 | 0.28 | 0.28 |
| 10 | Nukus | Uzbekistan | 46.5 | 11.3 | 0.22 | 0.20 |
| Rank | City | Region | BUA (km2) | Greened BUA (km2) | REVI of BUAs in 2020 | Urban Population (x104) | Emax (2018–2020) | population living in greened BUAs (x104) | Ratio of PLGB (%) |
| 1 | Urumqi | Xinjiang | 362 | 179 | 0.50 | 317 | 0.21 | 208.5 | 66 |
| 2 | Korla | Xinjiang | 49 | 27 | 0.55 | 33 | 0.19 | 20.4 | 62 |
| 3 | Changji | Xinjiang | 29 | 15 | 0.53 | 31 | 0.27 | 19.5 | 62 |
| 4 | Aksu | Xinjiang | 41 | 21 | 0.51 | 27 | 0.21 | 16.7 | 61 |
| 5 | Kashgar | Xinjiang | 50 | 8 | 0.15 | 41 | 0.20 | 14.4 | 35 |
| 6 | Karamay | Xinjiang | 49 | 37 | 0.75 | 17 | 0.24 | 13.8 | 83 |
| 7 | Almaty | Kazakhstan | 286 | 21 | 0.07 | 135 | 0.34 | 12.6 | 9 |
| 8 | Shihezi | Xinjiang | 46 | 14 | 0.31 | 31 | 0.29 | 11.1 | 36 |
| 9 | Hami | Xinjiang | 30 | 10 | 0.34 | 19 | 0.21 | 9.1 | 47 |
| 10 | Ashkhabad | Turkmenistan | 69 | 12 | 0.17 | 45 | 0.21 | 7.8 | 17 |
| 11 | Yining | Xinjiang | 76 | 6 | 0.07 | 39 | 0.25 | 7.3 | 18 |
| 12 | Kuitun | Xinjiang | 52 | 23 | 0.44 | 9 | 0.24 | 5.6 | 63 |
| 13 | Fukang | Xinjiang | 14 | 5 | 0.37 | 5 | 0.28 | 4.0 | 76 |
| 14 | Wusu | Xinjiang | 19 | 10 | 0.49 | 6 | 0.22 | 3.8 | 67 |
| 15 | Dushanbe | Tajikistan | 89 | 4 | 0.05 | 98 | 0.28 | 3.8 | 4 |
| 16 | Dushanzi | Xinjiang | 20 | 14 | 0.68 | 5 | 0.25 | 3.7 | 70 |
| 17 | Hetian | Xinjiang | 38 | 2 | 0.06 | 18 | 0.23 | 3.6 | 19 |
| 18 | Kuche | Xinjiang | 23 | 16 | 0.71 | 6 | 0.19 | 3.6 | 64 |
| 19 | Qitai | Xinjiang | 16 | 5 | 0.29 | 5 | 0.27 | 2.7 | 54 |
| 20 | Bachu | Xinjiang | 22 | 8 | 0.37 | 6 | 0.19 | 2.3 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).