Submitted:
08 October 2023
Posted:
09 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Basic Eurofins BioMAP assay system and cell exposure studies.
2.2. Activity profile analysis for annotated, dose-dependent activities.
2.3. Determining optimal concentrations.
3. Results
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Research Ethics
References
- Dornan, K.; Gunenc, A.; Oomah, D.; Hosseinian, F. Odd chain fatty acids and odd chain phenolic lipids (alkylresorcinols) are essential for diet. J Am Chem Soc 2021, 98, 813–824. [Google Scholar] [CrossRef]
- Venn-Watson, S.; Lumpkin, R.; Dennis, E.A. Efficacy of dietary odd-chain saturated fatty acid pentadecanoic acid parallels broad associated health benefits in humans: could it be essential? Sci Rep 2020, 10, 8161. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Koulman, A.; Sharp, S.J.; Imamura, F.; Kroger, J.; Schulze, M.B.; et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diab Endocrinol 2014, 14, 70146–70149. [Google Scholar]
- Huang, L.; et al. Circulating saturated fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. Nutrients 2019, 11, 998. [Google Scholar] [CrossRef]
- Imamura, F.; et al. Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLOS Med 2018, 15, e1002670. [Google Scholar] [CrossRef]
- Santaren, I.D.; et al. Serum pentadecanoic acid (15:0), a short-term marker of dairy food intake, is inversely associated with incident type 2 diabetes and its underlying disorders. Am J Clin Nutr 2014, 100, 1532–1540. [Google Scholar]
- Biong, A.S.; Veierod, M.B.; Ringstad, J.; Thelle, D.S.; Pedersen, J.I. Intake of milk fat, reflected in adipose tissue fatty acids and risk of myocardial infarction: a case-control study. Eur J Clin Nutr 2006, 60, 236–244. [Google Scholar] [CrossRef]
- Djousse, L.; Biggs, M.L.; Matthan, N.R.; Ix, J.H.; Fitzpatrick, A.L.; King, I.; et al. Serum individual nonesterified fatty acids and risk of heart failure in older adults. Cardiology 2021, 146, 351–358. [Google Scholar] [CrossRef]
- Khaw, K.T.; Friesen, M.D.; Riboli, E.; Luben, R.; Wareham, N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: the EPIC-Norfolk prospective study. PLOS Med 2012, 9, e1001255. [Google Scholar] [CrossRef]
- Liang, J.; Zhou, Q.; Amakye, W.K.; Su, Y.; Zhang, Z. Biomarkers of dairy fat intake and risk of cardiovascular disease: a systematic review and meta analysis of prospective studies. Crit Rev Food Sci Nutr 2018, 58, 1122–1130. [Google Scholar] [CrossRef]
- Trieu, K.; Bhat, S.; Dai, Z.; Leander, K.; Gigante, B.; Qian, F.; et al. Biomarkers of dairy fat intake, incident cardiovascular disease, and all-cause mortality: A cohort study, systematic review, and meta-analysis. PLOS Med 2021, 18, e1003763. [Google Scholar] [CrossRef]
- Kratz, M.; Marcovina, S.; Nelson, J.E.; Yeh, M.M.; Kowdley, K.V.; Callahan, H.S.; Song, X.; Di, C.; Utzshneider, K.M. Dairy fat intake is associated with glucose tolerance, hepatic and systemic insulin sensitivity, and liver fat but not β-cell function in humans. Am J Clin Nutr 2014, 99, 1385–1396. [Google Scholar] [CrossRef]
- Sawh, M.C.; Wallace, M.; Shapiro, E.; Goyal, N.; Newton, K.P.; Yu, E.L.; et al. Dairy fat intake, plasma pentadecanoic acid, and plasma iso-heptadecanoic acid are inversely associated with liver fat in children. J Pediatr Gastroenterol Nutr 2021, 72, e90–e96. [Google Scholar] [CrossRef]
- Wei, W.; Wong, C.C.; Jia, Z.; Liu, W.; Liu, C.; Ji, F.; et al. Parabacteriodes distasonis uses dietary inulin to suppress NASH vis its metabolite pentadecanoic acid. Nature Microbiol 2023, 8, 1534–1548. [Google Scholar] [CrossRef]
- Yoo, W.; Gjuka, D.; Stevenson, H.L.; Song, X.; Shen, H.; Yoo, S.Y.; et al. Fatty acids in non-alcoholic steatohepatitis: focus on pentadecanoic acid. PLOS ONE 2017, 12, e0189965. [Google Scholar] [CrossRef]
- Jee, S.H.; et al. Clinical relevance of glycerophospholipid, sphingomyelin and glutathione metabolism in the pathogenesis of pharyngolaryngeal cancer in smokers: the Korean Cancer Prevention Study - II. Metabolomics 2016, 12, 164. [Google Scholar] [CrossRef]
- Hori, A.; et al. Serum sphingomyelin species profile is altered in hematologic malignancies. Clin Chim Acta 2021, 514, 29–33. [Google Scholar] [CrossRef]
- Kruchinina, M.; Gromov, A.; Prudnikova, Y.; Shashkov, M.; Sokolova, A.; Kruchinin, V. Erythrocyte membrane fatty acids as the potential biomarkers for detection of early-stage and progression of colorectal cancer. Ann Oncol 2018, 29, Suppl 5. [Google Scholar] [CrossRef]
- Lu, Y.; Li, D.; Wang, L.; Zhang, H.; Jiang, F.; Zhang, R.; et al. Comprehensive investigation on associations between dietary intake and blood levels of fatty acids and colorectal cancer risk. Nutrients 2023, 15, 730. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Animal Feed Sci Tech 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Pranger, I.G.; Joustra, M.L.; Corpelejin, E.; Juskiet, F.A.; Kema, I.P.; Elfernik, S.J.W.H.; Singh-Povel, C.; Bakker, S.J.L. Fatty acids as biomarkers of total dairy fat and dairy fat intakes: a systematic review and meta-analysis. Nutrition Rev 2018, 77, 46–63. [Google Scholar] [CrossRef]
- Venn-Watson, S.K.; Butterworth, C.N. Broader and safer clinically-relevant activities of pentadecanoic acid compared to omega-3: evaluation of an emerging essential fatty acid across twelve primary human cell-based disease systems. PLOS ONE 2022, 17, e0268778. [Google Scholar] [CrossRef]
- Fu, W.C.; Li, H.Y.; Li, T.T.; Yang, K.; Chen, J.X.; Wang, S.J.; et al. Pentadecanoic acid promotes basal and insulin-stimulated glucose uptake in C2C12 myotubes. Food Nutr Res 2021, 22, 65. [Google Scholar] [CrossRef]
- To, N.B.; Truong, V.N.P.; Ediriweera, M.K.; Cho, S.K. Effects of combined pentadecanoic acid and tamoxifen treatment on tamoxifen resistance in MCF-7/SC breast cancer cell. Int J Mol Sci 2022, 23, 11340. [Google Scholar] [CrossRef]
- To, N.B.; Nguyen, Y.T.; Moon, J.Y.; Ediriweera, M.K.; Cho, S.K. Pentadecanoic acid, an odd-chain fatty acid, suppresses the stemness of MCF-7/SC human breast cancer stem-like cells through JAK2/STAT3 signaling. Nutrients 2020, 12, 1663. [Google Scholar] [CrossRef]
- Ediriweera, M.K.; To, B.; Lim, Y.; Cho, S.K. Odd-chain fatty acids as novel histone deacetylase 6 (HDAC6) inhibitors. Biochimie 2021, 186, 147–156. [Google Scholar] [CrossRef]
- Bishop, C.A.; Machete, T.; Henkel, J.; Schulze, M.B.; Klaus, S.; Piepelow, K. Heptadecanoic acid is not a key mediator in the prevention of diet-induced hepatic steatosis and insulin resistance in mice. Nutrients 2023, 15, 2052. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Chen, Y.; Wang, K.; Luan, Y. Design, synthesis and antitumor activity study of a gemcitabine prodrug conjugated with a HDAC6 inhibitor. Bioorg Med Chem Letters 2022, 72, 128881. [Google Scholar] [CrossRef]
- Zheng, J.S.; et al. Association between plasma phospholipid saturated fatty acids and metabolic markers of lipid, hepatic, inflammation and glycaemic pathways in eight European countries: a cross-sectional analysis in the EPIC-Interact study. BMC Med 2017, 15, 203. [Google Scholar] [CrossRef]
- Matthan, N.R.; Barger, K.; Wylie-Rosett, J.; Xue, X.; Groisman-Perelstein, A.E.; Diamantis, P.M.; Ginsberg, M.; Mossavar-Rahmani, Y.; Lichtenstein, A.H. Spillover effects of a family-based childhood weight-management intervention on parent nutrient biomarkers and cardiometabolic risk factors. Curr Dev Nutrition 2022, 6, 152. [Google Scholar] [CrossRef]
- Kurotani, K.; et al. Even- and odd-chain saturated fatty acids in serum phospholipids are differentially associated with adipokines. PLOS ONE 2017, 12, e0178192. [Google Scholar] [CrossRef]
- Smedman, A.E.M.; Gustafsson, I.B.; Berglund, L.G.T.; Vessby, B.O.H. Pentadecanoic acid in serum as a marker of intake of milk fat: relations between intake of milk fat and metabolic risk factors. Am J Clin Nutr 1999, 69, 22–29. [Google Scholar] [CrossRef]
- Aglago, E. K.; et al. Association between serum phospholipid fatty acid levels and adiposity in Mexican women. J Lipid Res 2017, 58, 1462–1470. [Google Scholar] [CrossRef]
- Lankinen, M.A.; et al. Plasma fatty acids as predictors of glycaemia and type 2 diabetes. Diabetologia 2015, 58, 2533–2544. [Google Scholar] [CrossRef]
- Skeaff, C.M.; Hodson, L.; McKenzie, J. Dietary-induced changes in fatty acid composition of human plasma, platelet and erythrocyte lipids follow a similar time course. J Nutr 2016, 136, 565–569. [Google Scholar] [CrossRef]
- Hyang, S.J.; Kenshiro; Teruo, M. Polyunsaturated (n-3) fatty acids susceptible to lipid peroxidation are increased in plasma and tissue lipids of rats fed docosahexaenoic acid-containing oils. J Nutr 2000, 130, 3028–3033. [Google Scholar]
- Soboleva, M.K.; Sharapov, V.I.; Grek, O.R. Fatty acids of the lipid fraction of erythrocyte membranes and intensity of lipid peroxidation in iron deficiency. Bull Exp Biol Med 1994, 117, 600–602. [Google Scholar] [CrossRef]
- Venn-Watson, S.; Baird, M.; Novick, B.; Parry, C.; Jensen, E.D. Modified fish diet shifted serum metabolome and alleviated chronic anemia in bottlenose dolphins (Tursiops truncatus): Potential role of odd-chain saturated fatty acids. PLOS ONE 2020, 15, e0230769. [Google Scholar] [CrossRef]
- Galdiero, E.; et al. Pentadecanoic acid against Candida albicans-Klebsiella pneumoniae biofilm: towards the development of an anti-biofilm coating to prevent polymicrobial infections. Res Microbiol 2021, 172, 103880. [Google Scholar] [CrossRef]
- Ricciardelli, A.; Casillo, A.; Corsaro, M.M.; Tutino, M.L.; Parrilli, E.; Van Der Mei, H.C. Pentadecanal and pentadecanoic acid coatings reduce biofilm formation of Staphylococcus epidermidis on PDMS. Pathogens Disease 2020, 78, ftaa012. [Google Scholar] [CrossRef]
- Gonzalez-Freire, M.; Diaz-Ruiz, A.; Hauser, D.; Martinez-Romero, J.; Ferrucci, L.; Bernier, M.; De Cabo, R. The road ahead for health and lifespan interventions. Ageing Res Rev 2020, 59, 101037. [Google Scholar] [CrossRef]
- Moskalev, A.; Guvatova, Z.; Lopes, I.D.A.; Beckett, C.W.; Kennedy, B.K.; De Magalhaes, J.P.; Makarov, A.A. Targeting aging mechanisms: pharmacological perspectives. Trends Endocrinol Metab 2022, 33, 266–280. [Google Scholar] [CrossRef]
- Chaib, S.; Tchkonia, T.; Kirkland, J.L. Cellular senescence and senolytics: the path to the clinic. Nat Med 2022, 28, 1556–1568. [Google Scholar] [CrossRef]
- DeVito, L.M.; et al. Extending human lifespan and longevity: a symposium report. Ann N Y Acad Sci 2022, 1507, 70–83. [Google Scholar] [CrossRef]
- Kritchevsky, S.B.; Justice, J.N. Testing the geroscience hypothesis: early days. J Gerontol A Biol Sci Med Sci 2020, 75, 99–101. [Google Scholar] [CrossRef]
- Justice, J.N.; et al. Development of clinical trials to extend healthy lifespan. Cardiovasc Endocrinol Metab 2018, 7, 80–83. [Google Scholar] [CrossRef]
- Justice, J.; et al. Frameworks for proof-of-concept clinical trials of interventions that target fundamental aging processes. J Gerontol A Biol Sci Med Sci 2016, 71, 1415–1423. [Google Scholar] [CrossRef]
- Schork, N.J.; Beaulieu-Jones, B.; Liang, W.; Smalley, S.; Goetz, L.H. Does modulation of an epigenetic clock define a geroprotector? Adv Geriatr Med Res 2022, 4, e220002. [Google Scholar] [CrossRef]
- Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- Browner, W.E.; Kahn, A.J.; Ziv, E.; Reiner, A.P.; Oshima, J.; Cawthorn, R.M.; Hsueh, W.C.; Cummings, S.R. The genetics of human longevity. Am J Med 2004, 117, 851–860. [Google Scholar] [CrossRef]
- Crimmins, E.M. Lifespan and healthspan: past, present, and promise. The Gerontologist 2015, 55, 901–911. [Google Scholar] [CrossRef]
- Longo, V.D.; Antebi, A.; Bartke, A.; Barzilai, N.; Brown-Borg, H.M.; Caruso, C.; Curiel, T.J.; de Cabo, R.; et al. Interventions to slow aging in humans: are we ready? Aging Cell 2015, 14, 497–510. [Google Scholar] [CrossRef]
- Nadon, N.L.; Strong, R.; Miller, R.A.; Harrison, D.E. NIA interventions testing program: investigating putative aging intervention agents in a genetically heterogeneous mouse model. EBioMedicine 2017, 21, 3–4. [Google Scholar] [CrossRef]
- Garay, R.P. Investigational drugs and nutrients for human longevity. Recent clinical trials registered in ClinicalTrials.gov and clinicaltrialsregister.eu. Expert Opin Investig Drugs 2021, 30, 749–758. [Google Scholar] [CrossRef]
- Blagosklonny, M.V. Rapamycin for longevity: opinion article. Aging 2019, 11, 8048–8067. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Kim, H.; Park, S.R.; Yoon, Y.J. An overview of rapamycin: from discovery to future perspectives. J Indus Microbiol Biotechnol 2017, 44, 537–553. [Google Scholar] [CrossRef]
- Sorrenti, V.; Benedetti, F.; Buriani, A.; Fortinguerra, S.; Caudullo, G.; Davinelli, S.; Zella, D.; Scapagnini, G. Immunomodulatory and antiaging mechanisms of resveratrol, rapamycin, and metformin: focus on mTOR and AMPK signaling networks. Pharmaceuticals 2022, 15, 912. [Google Scholar] [CrossRef]
- Bridle, K.R.; Popa, C.; Morgan, M.L.; Sobbe, A.L.; Clouston, A.D.; Fletcher, L.M.; Crawford, D.H.G. Rapamycin inhibits hepatic fibrosis in rats by attenuating multiple profibrogenic pathways. Transplantation 2009, 15, 1315–1324. [Google Scholar] [CrossRef]
- Ali, E.S.; Mitra, K.; Akter, S.; Ramproshad, S.; Mondal, B.; Khan, I.N.; Islam, M.T.; Sharifi-Rad, J.; Calina, D.; Cho, W.C. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell Int 2022, 22, 284. [Google Scholar] [CrossRef]
- Eninger, D.; Neff, F.; Xie, K. Longevity, aging and rapamycin. Cell Mol Life Sci 2014, 71, 4325–4346. [Google Scholar] [CrossRef]
- Soukas, A.A.; Hao, H.; Wu, L. Metformin as anti-aging therapy: is it for everyone? Trends Endocrinol Metab 2019, 30, 745–755. [Google Scholar] [CrossRef]
- Salvatore, T.; Pafundi, P.C.; Morgillo, F.; Di Liello, R.; Galiero, R.; Nevola, R.; Marfella, R.; Monaco, L.; et al. Metformin: an old drug against old age and associated morbidities. Diab Res Clin Prac 2020, 160, 108025. [Google Scholar] [CrossRef]
- Agius, L.; Ford, B.E.; Chachra, S.S. The metformin mechanism on gluconeogenesis and AMPK activation: the metabolite perspective. Int J Mol Sci 2020, 21, 3240. [Google Scholar] [CrossRef]
- Cheng, F.F.; Liu, Y.L.; Du, J.; Lin, J.T. Metformin’s mechanisms in attenuating hallmarks of aging and age-related disease. Aging Dis 2022, 13, 970–986. [Google Scholar] [CrossRef]
- Martin-Montalvo, A.; Mercken, E.; Mitchell, S.; et al. Metformin improves healthspan and lifespan in mice. Nat Commun 2013, 4, 2192. [Google Scholar] [CrossRef]
- Anisimov, V.N.; Berstein, L.M.; Egormin, P.A.; Piskunova, T.S.; Popovich, I.G.; Zabezhinski, M.A.; Tyndyk, M.L.; Yurova, M.V.; et al. Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 2008, 7, 2769–2773. [Google Scholar] [CrossRef]
- Parish, A.J.; Swindell, W.R. Metformin has heterogenous effects on model organism lifespans and is beneficial when started at an early age in Caenorhabditis elegans: A systematic review and meta-analysis. Aging Cell 2022, 21, e13733. [Google Scholar] [CrossRef]
- Barzilai, N.; Crandall, J.P.; Kritchevsky, S.B.; Espeland, M.A. Metformin as a tool to target aging. Cell Metab 2016, 23, 1060–1065. [Google Scholar] [CrossRef]
- Wolf, T.; Droste, J.; Gren, T.; Ortseifen, V.; Schneiker-Bekel, S.; Zemke, T.; et al. The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110. BMC Genomics 2017, 18, 562. [Google Scholar] [CrossRef]
- Khwaja, N.; Arunagirinathan, G. Efficacy and cardiovascular safety of alpha glucosidase inhibitors. Drug Safety 2021, 16, 122–128. [Google Scholar] [CrossRef]
- Wagner, H.; Degerblad, M.; Thorell, A.; Nygren, J.; Ståhle, A.; Kuhl, J.; et al. Combined treatment with exercise training and acarbose improves metabolic control and cardiovascular risk factor profile in subjects with mild type 2 diabetes. Diabetes Care 2006, 29, 1471–1477. [Google Scholar] [CrossRef]
- Harrison, D.E.; Strong, R.; Allison, D.B.; Ames, B.N.; Astle, C.M.; Atamna, H.; Fernandez, E.; Flurkey, K.; et al. Acarbose, 17- α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 2014, 13, 273–282. [Google Scholar] [CrossRef]
- Smith, B.; Miller, R.; Ericsson, A.; Harrison, D.; Strong, R.; Schmidt, T. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol 2019, 19, 130. [Google Scholar] [CrossRef]
- Wu, B.; Yan, J.; Yang, J.; Xia, Y.; Li, D.; Zhang, F.; Cao, H. Extension of life span by acarbose: is it mediated by the gut microbiota? Aging Dis 2022, 13, 1005–1014. [Google Scholar] [CrossRef]
- Berg, E.L. Phenotypic chemical biology for predicting safety and efficacy. Drug Disc Today Technol 2017, 23, 53–60. [Google Scholar] [CrossRef]
- Zheu, Y.; et al. A prospective study and longitudinal study of plasma phospholipid saturated fatty acid profile in relation to cardiometabolic markers and the risk of gestational diabetes. Am J Clin Nutr 2018, 107, 1017–1026. [Google Scholar] [CrossRef]
- De Mello, V.D.; Selander, T.; Lindstom, J.; Tuomilehto, J.; Uusitupa, M.; Kaarninranta, K. Serum levels of plasmalogens and fatty acid metabolites associate with retinal microangiopathy in participants from the Finnish Diabetes Prevention Study. Nutrients 2021, 13, 4452. [Google Scholar] [CrossRef]
- Iqbal, T.; Miller, M. A fishy topic: VITAL, REDUCE-IT, STRENGTH, and beyond: putting omega-3 fatty acids into practice in 2021. Curr Cardiol Rep 2021, 23, 111. [Google Scholar] [CrossRef]
- Okereke, O.I.; Vyas, C.M.; Mishoulon, D. Effect of long-term supplementation with marine omega-3 fatty acids vs. placebo on risk of depression or clinically relevant depressive symptoms and on change in mood scores: A randomized clinical trial. JAMA 2021, 326, 2385–2394. [Google Scholar] [CrossRef]
- Orkaby, A.R.; Dushkes, R.; Ward, R. Effect of vitamin D3 and omega-3 fatty acid supplementation on risk of frailty: An ancillary study of a randomized clinical trial. JAMA Netw Open 2022, 5, e2231206. [Google Scholar] [CrossRef]
- Hahn, J.; Cook, N.R.; Alexander, E.K.; Friedman, S.; Walter, J.; Bubes, V.; et al. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ 2022, 376, e066452. [Google Scholar] [CrossRef]
- Christen, W.G.; Cook, N.R.; Manson, J.E. Efficacy of marine omega-3 fatty acid supplementation vs placebo in reducing incidence of dry eye disease in healthy US adults: A randomized clinical trial. JAMA Ophthalmol 2022, 140, 707–714. [Google Scholar] [CrossRef]
- Pfeuffer, M.; Jaudszus, A. Pentadecanoic and heptadecanoic acids: multifaceted odd-chain fatty acids. Adv Nutr 2016, 7, 730–734. [Google Scholar] [CrossRef]
- Adachi, K.; Yokoyama, D.; Tamai, H.; Sadai, M.; Oba, K. Effect of the glyceride of pentadecanoic acid on energy metabolism in hair follicles. Int J Cosmetic Sci 1993, 15, 125–131. [Google Scholar] [CrossRef]
- Millner, A.; Atilla-Gokcumen, G.E. Lipid players of cellular senescence. Metabolites 2020, 10, 399. [Google Scholar] [CrossRef]
- Hulbert, A.J. On the importance of fatty acid composition of membranes for aging. J Theor Biol 2005, 234, 277–288. [Google Scholar] [CrossRef]
- Kamata, S.; Honda, A.; Ishii, I. Current clinical trial status and future prospects of PPAR-targeted drugs for treating nonalcoholic fatty liver disease. Biomolecules 2023, 13, 1264. [Google Scholar] [CrossRef]
- Xue, C.; Yao, Q.; Gu, X.; Shi, Q.; Yan, X.; Chu, Q.; et al. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Sig Trans Targ Ther 2023, 8, 204. [Google Scholar] [CrossRef]
- Peng, J.; Xie, F.; Qin, P.; Liu, Y.; Niu, H.; Sun, J.; et al. Recent development of selective inhibitors targeting the HDAC6 as anti-cancer drugs: structure, function and design. Bioorg Chem 2023, 138, 106622. [Google Scholar] [CrossRef]
- Dugan, B.; Conway, J.; Duggal, N.A. Inflammaging as a target for healthy aging. Age and Ageing 2023, 52, afac328. [Google Scholar] [CrossRef]
- Venn-Watson, S.; Jensen, E.D.; Schork, N.J. 25-year longitudinal dolphin cohort supports that long-lived individuals in the same environment exhibit variation in aging rates. PNAS 2020, 117, 20950–20958. [Google Scholar] [CrossRef]
- Salive, M.E.; Coroni-Huntley, J.; Guralnik, J.M.; Phillips, C.L.; Wallace, R.B.; Ostfeld, A.M.; Choen, H.J. Anemia and hemoglobin levels in older persons: relationship with age, gender, and health status. J Am Geriat Soc 1992, 40, 489–496. [Google Scholar] [CrossRef]
- Kaestner, L.; Minetti, G. The potential of erythrocytes as cellular aging models. Cell Death Differ 2017, 24, 1475–1477. [Google Scholar] [CrossRef]
- Groarke, E.M.; Young, N.S. Aging and hematopoiesis. Clin. Geriatr. Med 2019, 35, 285–293. [Google Scholar] [CrossRef]
- Warensjo, E.; Jansson, J.H.; Berglund, L.; Boman, K.; Ahren, B.; Weinehall, L.; et al. Estimated intake of milk fat is negatively associated with cardiovascular risk factors and does not increase the risk of a first myocardial infarction. A prospective case-control study. Br J Nutr 2004, 91, 635–642. [Google Scholar]
- Budczies, J.; Denkert, C.; Muller, B.M.; Brockmoller, S.F.; Klauschen, F.; Gyorffy, B.; et al. Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue - a GC-TOFMS based metabolomics study. BMC Genomics 2012, 13, 334. [Google Scholar] [CrossRef]
- Qi, S.; Wu, Q.; Chen, Z.; Zhang, W.; Zhou, Y.; Mao, K.; Li, J.; et al. High-resolution metabolomic biomarkers for lung cancer diagnosis and prognosis. Sci Rep 2021, 11, 11805. [Google Scholar] [CrossRef]
- Teng, M.L.P.; Ng, C.H.; Huang, D.Q.; Chan, K.E.; Tan, D.J.H.; Lim, W.H.; et al. Global incidence and prevalence of nonalcoholic fatty liver disease. Clin Mol Hepatol 2023, 29, S32–S42. [Google Scholar] [CrossRef]
- Jiao, J.; Kwan, S.Y.; Sabotta, C.M.; Tanaka, H.; Veillon, L.; Warmoes, M.O.; et al. Circulating fatty acids associated with advanced fibrosis and hepatocellular carcinoma in south Texas hispanics. Cancer Epidemiol Biomarkers Prev 2021, 30, 1643–1651. [Google Scholar] [CrossRef]
- Jimenez-Cepeda, A.; Davila-Said, G.; Orea-Tejeda, A.; Gonzalez-Islas, D.; Elizondo-Montes, M.; Perez-Cortes, G.; et al. Dietary intake of fatty acids and its relationship with FEV1/FVC in patients with chronic obstructive pulmonary disease. Clin Nutr 2019, 29, 92–96. [Google Scholar] [CrossRef]
- Roh, D.K.; Lee, D.W.; Yi, J.Y.; Park, C.J.; Cho, B.K.; Kim, C.W.; Kim, T.Y. A clinical study of pentadecanoic glyceride (LHOP) on male pattern alopecia. J Korean Soc Clin Pharmacol Ther 1998, 6, 199–206. [Google Scholar] [CrossRef]
- Fonteh, A.N.; Cipolio, M.; Chiang, J.; Arakaki, X.; Harrington, M.G. Human cerebrospinal fluid fatty acid levels differ between supernatant fluid brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease. PLOS ONE 2014, 9, e100519. [Google Scholar] [CrossRef]
- Vezina, C.; Kudelski, A.; Sehgal, S.N. Rapamycin (AY-22, 989), a new antifungal antibiotic. J Antibiotics 1975, 28, 721–726. [Google Scholar] [CrossRef]
- Venn-Watson, S.; Reiner, J.; Jensen, E.D. Pentadecanoylcarnitine is a newly discovered endocannabinoid with pleiotropic activities relevant to supporting physical and mental health. Sci Rep 2022, 12, 13717. [Google Scholar] [CrossRef]
- Brydges, C.R.; Bhattacharyya, S.; Dehkordi, S.M.; Milaneschi, Y.; Penninx, B.; Jansen, R.; et al. Metabolomic and inflammatory signatures of symptom dimensions in major depression. Brain Behav Immun 2022, 102, 42–52. [Google Scholar] [CrossRef]
- Ye, X.; Linton, J.M.; Schork, N.J.; Buck, L.B.; Petrascheck, M. A pharmacological network for lifespan extension in Caenorhabditis elegans. Aging Cell 2013, 13, 206–215. [Google Scholar] [CrossRef]
- Zhuang, P.; Cheng, L.; Wang, J.; Zhang, Y. Saturated fatty acid intake is associated with total mortality in a nationwide cohort study. J Nutrition 2019, 149, 68–77. [Google Scholar] [CrossRef]
- Manca, C.; Carta, G.; Murru, E.; Abolghasemi, A.; Ansar, H.; Errigo, A.; et al. Circulating fatty acids and endocannabinoide-related mediator profiles associated with human longevity. GeroSci 2021, 43, 1783–1798. [Google Scholar] [CrossRef]
- Gibson, K.R.; Pulliam, C.B. Cooperative care. The time has come. J Nurs Adm 1987, 17, 19–21. [Google Scholar]
- Zheng, J. S.; Imamura, F.; Sharp, S.J.; Koulman, A.; Griffin, J.L.; Mulligan, A.A.; et al. Changes in plasma phospholipid fatty acid profiles over 13 years and correlates of change: European Prospective Investigation into Cancer and Nutrition-Norfolk Study. Am J Clin Nutr 2019, 109, 1527–1534. [Google Scholar] [CrossRef]
- Tsoukalas, D.; Alegakis, A.K.; Fragkiadaki, P.; Papakonstantinou, E.; Tsilimidos, G.; Geraci, F.; et al. Application of metabolomics part II: Focus on fatty acids and their metabolites in healthy adults. Int J Mod Med 2019, 43, 233–242. [Google Scholar] [CrossRef]
| BioMAP Phenotypic Cell Profiles | Dose-Dependent Activities on Clinically-Relevant Biomarkers | ||||
|---|---|---|---|---|---|
| C15:0 (FA15) | Rapamycin | Metformin | Acarbose | Omega-3 (EPA) [22] | |
| Dose ranges | 1.9-50 µM | 0.3-9 µM | 190-5000 µM | 1.1-30 µM | 1.9-17 µM |
| Dietary supplement (DS) or prescription drug (Rx) ingredient | DS | Rx | Rx | Rx | DS |
| Total number (%) of systems with dose-dependent activities | 10 (83%) | 12 (100%) | 7 (58%) | 3 (25%) | 4 (33%) |
| Total number of biomarkers with dose-dependent changes | 36 | 32 | 17 | 5 | 7 |
| BioMAP Phenotypic Cell Profiles |
Dose-Dependent Annotated Activities on Clinically-Relevant Biomarkers |
|||||||
|
C15:0 (FA15TM) (1.9-50 µM) |
Rapamycin (0.3-9 µM) |
Metformin (190-5000 µM) |
Acarbose (1.1-30 µM) |
Omega-3 (EPA) [22] (1.9-17 µM) |
||||
| BioMAP cell system | Human cell types & stimulation | Disease relevance | ||||||
| 3C | Venular endothelial cells stimulated with TNFɑ, IL-1β, IFN𝜸 | Cardiovascular disease, chronic inflammation | ||||||
| 3C | Venular endothelial cells stimulated with TNFɑ, IL-1β, IFN𝜸 | Cardiovascular disease, chronic inflammation | ↓ HLA-DR ↓ MCP-1 ↓ proliferation |
↓ HLA-DR ↓ VCAM-1 ↓ uPAR ↓ proliferation |
↓ HLA-DR ↓ IL-8 |
None | ↓ MCP-1 ↓ uPAR |
|
| 4H | Venular endothelial cells stimulated with IL-4, histamine | Autoimmunity, allergy, asthma | ↓ Eot3 | ↓ MCP-1 | None | None | None | |
| LPS | Venular endothelial cells and peripheral blood mononuclear cells stimulated with TLR4 ligand | Chronic inflammation, cardiovascular disease | ↓ VEGFR2 ↓ MCP-1 ↓ CD69 ↓ IL-1ɑ |
↓ CD40 | ↓ CD40 | None | None | |
| SAg | Venular endothelial cells and peripheral blood mononuclear cells stimulated with TCR ligands | Chronic inflammation, autoimmune disease | ↓ CD38 ↓ CD40 ↓ CD69 ↓ T cell proliferation |
↓ CD38 ↓ CD40 ↓ MCP-1 ↓ T cell proliferation |
↓ CD38 ↓ CD69 ↓ T cell proliferation |
None | None | |
| BT | Peripheral blood mononuclear cells and B cells stimulated with ɑIgM, TCR ligands | Asthma, cancer, autoimmunity, allergy | ↓ IgG ↓ IL-17F |
↓ IgG ↓ IL-17F ↓ TNFɑ ↓ IL-6 ↓ IL-2 ↓ IL-17A ↓ proliferation |
None | None | None | |
| BF4T | Bronchial epithelial cells and dermal fibroblasts stimulated with IL-4, TNFɑ | Fibrosis, lung inflammation, asthma, allergy | None | ↓ VCAM-1 ↓ tPA |
↓ MCP-1 ↓ tPA |
None | ↓ PAI-I | |
| BE3C | Bronchial epithelial cells stimulated with IL-1β, IFN𝜸, TNFɑ | COPD, lung inflammation | ↓ tPA | ↓ tPA | ↓ IP-10 ↓ IL-8 ↓ HLA-DR ↓ MMP9 |
None | None | |
| CASM3C | Coronary artery smooth muscle cells stimulated with IL-1β, TNFɑ, IFN𝜸 | Cardiovascular inflammation, restenosis | ↓ HLA-DR ↓ IL-6 ↓ VCAM-1 ↓ TM ↓ TF ↓ proliferation |
↓ HLA-DR ↓ uPAR ↓ proliferation |
None | ↓ uPAR | None | |
| HDF3CGF | Dermal fibroblasts stimulated with IFN𝜸, TNFɑ, IL-1β, EGT, bFGF, PDGF-BB | Fibrosis, chronic inflammation | ↓ PAI-1 ↓ VCAM-1 ↓ IP-10 ↓ ITAC ↓ MIG ↓ fibroblast proliferation |
↓ PAI-I ↓ EGFR ↓ fibroblast proliferation |
↓ Col-III | ↓ EGFR ↓fibroblast proliferation |
↓ PAI-I ↓ M-CSF |
|
| KF3CT | Keratinocytes, dermal fibroblasts stimulated with IL-1β, IFN𝜸, TGFβ, TNFɑ | Dermatitis, psoriasis | None | ↓ PAI-I | None | None | None | |
| MyoF | Lung fibroblasts stimulated with TGFβ, TNFɑ | Wound healing, matrix remodeling, fibrosis, chronic inflammation | ↓ VCAM-1 ↓ Col-I ↓ IL-8 ↓ Decorin ↓ TIMP-1 |
↓ VCAM-1 ↓ PAI-I |
None | ↓ Col-IV ↓TIMP1 |
↓ Col-I ↓ Col-III |
|
| /Mphg | Macrophages and venular endothelial cells stimulated with TLR2 ligand | Chronic inflammation, restenosis, cardiovascular disease | ↓ CD40 ↓ CD69 |
↓ sIL-10 | ↓ MCP-1 ↓ Esel ↓ IL-8 |
None | None | |
| Compound | Number of Biomarker Hits by Increasing Dose | |||||
|---|---|---|---|---|---|---|
| D1 Lowest dose |
D2 Lower dose |
D3 Higher dose |
D4 Highest dose |
Optimal Dose (μM) | ||
| C15:0 (FA15) | 28 | 56 | 81 | 40 | 17 | |
| Rapamycin | 55 | 62 | 61 | 75 | 9 | |
| Metformin | 9 | 5 | 28 | 53 | 5,000 | |
| Acarbose | 15 | 17 | 24 | 28 | 30 | |
| BioMAP cell system | Disease relevance | Significant Activities on Clinically-Relevant Biomarkers at Each Compound’s Optimal Dose |
||
|---|---|---|---|---|
| C15:0 (FA15) | Rapamycin | Metformin | ||
| Optimal Dose | 17 µM | 9 µM | 5000 µM | |
| 3C | Cardiovascular disease, chronic inflammation | ↓ MCP-1, ↓ HLA-DR, ↓ SRB ↓ endothelial cell proliferation, ↑ thrombomodulin, ↓ IL-8 |
↓ MCP-1, ↓ HLA-DR, ↓ SRB ↓ endothelial cell proliferation, ↓ VCAM-1, ↓ uPAR |
↓ HLA-DR, ↓ uPAR, ↓ IL-8 |
| 4H | Autoimmunity, allergy, asthma | ↓ eotaxin-3, ↓ VEGFR | ↓ MCP-1, ↓ SRB | ↓ P-selectin |
| LPS | Chronic inflammation, cardiovascular disease | ↓ MCP-1, ↓ VCAM-1, ↑ tissue factor, ↓ CD40, ↓ SRB ↓ CD69, ↑ thrombomodulin, ↓ IL-1ɑ, |
↓ MCP-1, ↓ VCAM-1, ↑ tissue factor, ↓ CD40, ↓ SRB ↓ M-CSF, ↑ PGE2, |
↓ MCP-1, ↓ CD40, ↓ CD69, ↑ IL-1ɑ, ↑ PGE2, ↑ TNFɑ |
| SAg | Chronic inflammation, autoimmune disease | ↓ CD38, ↓ CD40, ↓ CD69, ↓ T cell proliferation, ↓ SRB |
↓ CD38, ↓ CD40, ↓ T cell proliferation, ↓ SRB, ↓ MCP-1 |
↓ CD38, ↓ CD40, ↓ T cell proliferation, ↓ CD69, ↓ IL-8 |
| BT | Asthma, cancer, autoimmunity, allergy | ↓ sIgG, ↓ sIL-17A, ↓ sIL-17F, ↓ TNFɑ |
↓ sIgG, ↓ sIL-17A, ↓ sIL-17F, ↓ TNFɑ, ↓ B cell proliferation, ↓ sIL-2, ↓ sIL-6, |
↓ sIgG, ↓ TNFɑ, ↓ sIL-6 |
| BF4T | Fibrosis, lung inflammation, asthma, allergy | None | ↓ tPA, ↓ VCAM-1 | ↓ tPA, ↓ MCP-1, ↓ eotaxin-3, ↓ IL-8, ↓ MMP-3, ↓ MMP-9 |
| BE3C | COPD, lung inflammation | ↓ PAI-I, ↓ tPA | ↓ PAI-I, ↑ MMP-1 | ↓ tPA, ↓ IL-8, ↓ HLA-DR, ↓ MMP-9 |
| CASM3C | Cardiovascular inflammation, restenosis | ↓ HLA-DR, ↓ VCAM-1, ↓ thrombomodulin, ↓ tissue factor |
↓ HLA-DR, ↓ uPAR, ↓ coronary artery proliferation, |
None |
| HDF3CGF | Fibrosis, chronic inflammation | ↓ PAI-I, ↓ fibroblast proliferation, ↓ MCP-1, ↓ VCAM-1, ↓ IP-10, ↓ I-TAC, ↓ MIG |
↓ PAI-I, ↓ fibroblast proliferation, ↓ EGFR | ↓ VCAM-1, ↓ collagen-III |
| KF3CT | Dermatitis, psoriasis | ↓ PAI-I | ↓ PAI-I | None |
| MyoF | Wound healing, matrix remodeling, fibrosis, chronic inflammation | ↓ VCAM-1, ↓ collagen-I, ↓ collagen-III, ↑ collagen-IV, ↓ decorin, ↓ TIMP-1 |
↓ VCAM-1, ↑ IL-8 | None |
| /Mphg | Chronic inflammation, restenosis, cardiovascular disease | ↓ sIL-10, ↓ CD40, ↑ MIP-1ɑ, ↑ E-selectin, ↓ CD69, |
↓ sIL-10, ↓ E-selectin | ↓ E-selectin, ↓ MCP-1, ↓ IL-8, |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
