Submitted:
06 October 2023
Posted:
07 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Master Equation for a Real Cavity
3. Linear entropy for the quantized field
4. Numerical results
5. Conclusions
Appendix A
References
- C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University Press, 2005).
- Abdel-Kahlek, K. Berrada, and H. Eleuch, Effect of the time-dependent coupling on a superconducting qubit-field system under decoherence: Entanglement and wehrl entropy, Ann. of Phys 361, 247–258. (2015). [CrossRef]
- J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, 1955).
- H. Araki and E. H. Lieb, Entropy inequalities, Commun. Math. Phys. 18, 160–170. (1970).
- J. D. Phoenix and P. L. Knight, Fluctuations and entropy in models of quantum optical resonance, Annals of Physics 186, 381–407. (1988). [CrossRef]
- A. Zúñiga-Segundo, R. Juárez-Amaro, O. Aguilar-Loreto, and H. Moya-Cessa, Field’s entropy in the atom-field interaction: Statistical mixture of coherent states, Annals of Physics 379, 150–158. (2017). [CrossRef]
- B. M. Rodríguez-Lara and H. M. Moya-Cessa, Por qué y cómo encontramos funciones de matrices: entropia en mecánica cuántica, Revista Mexicana de Física E 51, 87–98 (2005).
- A. Motazedifard, S. A. Madani, and N. S. Vayaghan, Measurement of entropy and quantum coherence properties of two type-i entangled photonic qubits, Opt. Quant. Electr. 53, 378–401. (2021). [CrossRef]
- E. T. Jaynes and F. W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE. 51, 89–109. (1963).
- M. Satyanarayana, P. Rice, V. R., and H. Carmichael, Ringing revivals in the interaction of a two-level atom with squeezed light, J. Opt. Soc. Am. B 6, 228–237. (1989).
- H. Moya-Cessa and A. Vidiella-Barranco, Interaction of squeezed states of light with two-level atoms, J. of Mod. Optics 39, 2481–2499. (1992). [CrossRef]
- A. Vidiella-Barranco, H. Moya-Cessa, and V. Buzek, Interaction of superpositions of coherent states of light with two-level atoms, J. of Mod. Optics 39, 1441–1459. (1992). [CrossRef]
- R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131, 2766 (1963). [CrossRef]
- S. M. Barnett, A. Beige, A. Ekert, B. M. Garraway, C. H. Keitel, V. Kendon, M. Lein, G. J. Milburn, H. Moya-Cessa, M. Murao, J. K. Pachos, G. M. Palma, E. Paspalakis, S. J. D. Phoenix, B. Piraux, M. B. Plenio, B. C. Sanders, J. Twanmley, A. Vidiella-Barranco, and M. S. Kim, Journeys from quantum optics to quantum technology, Progress in Quantum Electronics 54, 19–45. (2017). [CrossRef]
- J. Gea-Banacloche, Atom- and field-state evolution in the jaynes-cummings model for large initial fields, Phys. Rev. A 44, 5913–5931. (1991). [CrossRef]
- R. Juárez-Amaro, L. M. Rosales, J. A. Anaya-Contreras, Zúñiga-Segundo, and H. M. Moya-Cessa, Relation between the entropy and the linear entropy in the ion–laser interaction, Journal of Modern Optics 67, 805–810. (2020). [CrossRef]
- S. J. D. Phoenix, Wave-packet evolution in the damped oscillator, Phys. Rev. A 41, 5132–5138. (1990). [CrossRef]
- L. M. Arévalo-Aguilar and H. M. Moya-Cessa, Quantum bits and superposition of displaced fock states of the cavity field, Revista Mexicana de Física 48, 423 (2002). [CrossRef]
- H. Wu, X. Fan, and L. Chen, How gravitational fluctuations degrade the high dimensional spatial entanglement, Phys. Rev. D 106, 045023. (2022).
- H. Wu, X. Fan, and L. Chen, Twisting and entangling gravitons in high-dimensional orbital agular momentum states ia photon-graviton conversion, Phys. Rev. D 107, 125027 (2023). [CrossRef]
- A. Perez-Leija, D. Guzmán-Silva, L.-M. R. de J., M. Gräfe, M. Heinrich, H. M. Moya-Cessa, K. Busch, and A. Szameit, Endurance of quantum coherence due to particle indistinguishability in noisy quantum networks, npj Quantum Information 4, 45 (2018). [CrossRef]
- N. Yazdanpanah, M. K. Tavassoly, R. Juárez-Amaro, and H. M. Moya-Cessa, Reconstruction of quasiprobability distribution functions of the cavity field considering field and atomic decays, Optics Communications 400, 69–73. (2017). [CrossRef]
- H. Moya-Cessa, Entropy operator and associated wigner function, International Journal of Quantum Information 5, 149 (2023). [CrossRef]
- J. Moya-Cessa, L. Berriel-Valdos, and H. Moya-Cessa, Optical production of the husimi function of two gaussian functions, Applied Mathematics Infromation Sciences 2, 309–316 (2008).
- A. B. Klimov and L. L. Sanchez-Soto, Method of small rotations and effective hamiltonians in nonlinear quantum optics, Physical Review A 61, 063802 (2000). [CrossRef]
- S. M. Chumakov, A. B. Klimov, and C. Saavedra, Dispersive atomic evolution in a dissipative-driven cavity, Physical Review A 61, 033814 (2000). [CrossRef]
- A. B. Klimov, L. L. Sanchez-Soto, and J. Delgado, Mimicking a kerrlike medium in the dispersive regime of second-harmonic generation, Optics Communications 191, 419 (2001). [CrossRef]
- L. M. Arévalo-Aguilar and H. Moya-Cessa, Cavidad con pérdidas: una descripción usando superoperadores, Revista Mexicana de Física 42, 675 (1996).






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
