Submitted:
05 October 2023
Posted:
06 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
| Facility | Country | Accelerators available | Beams |
|---|---|---|---|
| Cologne Accelerator Laboratory | Germany | 10 MV FN-Tandem | Any specie that can form negative ions |
| 6 MV Tandetron | AMS* | ||
| Heavy Ion Laboratory | Poland | Isochronous heavy ion cyclotron (Kmax=160) | He-Xe |
| IJC Lab | 15 MV Tandem (ALTO) | Proton to aggregates | |
| France | 50 MV electron accelerator (ALTO) | e- | |
| 4 MeV NEC pelletron accelerator (ANDROMEDE) | p-Au, He, Ne, Ar, Kr, Xe | ||
| Licorne neutron source | n | ||
| Rudjer Bošković Institute Accelerator Facility | Croatia | 6.0 MV EN Tandem | p to Au |
| 1 MV Tandetron | p to Au | ||
| Tandetron laboratory in Piešt’any | Slovakia | 2 MV Tandetron | p, d, α |
| The Oslo Cyclotron Laboratory | Norway | MC-35 cyclotron | 1H+, 2H+, 3He2+ and 4He2+ |
| S-DALINAC | Germany | Superconducting electron accelerator | e- |
| The INFN Laboratori Nazionali del Sud | 13 MV TANDEM - HVEC MP | p to Au | |
| Italy | Superconducting Cyclotron K800 | H to U, also exotic beams see Sec. 2.8. | |
| The Atomki Accelerator Center | MGC-20E Cyclotron | p, d, 3He2+ and 4He2+ | |
| Hungary | 1 MV Van de Graaff | p, d, He | |
| 5 MV Van de Graaff | Inactive | ||
| 2 MV Tandetron | P, He, B, C, O, S, Si, Cu etc. | ||
| TR-24 cyclotron | p | ||
| CANAM RI | Czech R. | U-120 M cyclotron | H+, H−, D+, D−,3He2+, 4He2+ H+, D+, 3He2+, 4He2+ |
| MT25 microtron | e- | ||
| 3 MV Tandetron | Almost all elements of the periodic system | ||
| Bronowice Cyclotron Center | Poland | Proteus C-235 cyclotron | p |
| 18/9 MeV cyclotron | p, d | ||
| CNA, Seville | Spain | 3 MV Van de Graaff Tandem | virtually all types of stable ions |
| ¸ | 1 MV Tandetron | AMS* | |
| HiSPANoS neutron source | n | ||
| LATR, Lisbon | Portugal | 2.5 MV Van de Graaff | H, 3He, 4He and heavier ions |
| 3 MV Tandem | H, 3He, 4He and heavier ions | ||
| INFN-HH | 9 MV FN Pelletron Tandem | p to Au | |
| 3 MV HVEE Tandetron | p to Au | ||
| 1 MV HVEE Tandetron | AMS* | ||
| 400 kV HVEE electrostatic accelerator | H+, He+ | ||
| LUNA | Italy | 3.5 MV Cockroft-Walton accelerator | p, α, 12C |
| Felsenkeller underground accelerator laboratory | Germany | 5 MV Pelletron accelerator | p, α, 12C |
| CMAM, Madrid | Spain | 5 MV HVEE Pelletron Tandem | p to Au |
| 5.5 MV Van de Graaff Tandem | n (via neutron-induced reactions), stable beams | ||
| TAL, Demokritos | Greece | 250 keV single-stage accelerator PAPAP | p, d |
| 17 MeV Scanditronix Cyclotron | p, d | ||
| 2.5 MV Tandetron | AMS* | ||
| MIC, JSI | Slovenia | 2 MV Tandetron | H, 3He, 4He and heavier ions |
2. Small-Scale Facilities
2.1. Cologne Accelerator Laboratory, Institute for Nuclear Physics (IKP), Cologne, Germany
2.2. Heavy Ion Laboratory (HIL), Warsaw, Poland
2.3. IJClab (Laboratory of the Physics of the two Infinities Irène Joliot-Curie), Orsay, France
2.4. Rudjer Bošković Institute Accelerator Facility, Zagreb, Croatia
2.5. Tandetron laboratory in Piešt’any, Institute of Physics, Slovak Academy of Sciences
2.6. The Oslo Cyclotron Laboratory (OCL), University of Oslo, Norway
2.7. The Superconducting Darmstadt Linear Electron Accelerator (S-DALINAC), Institut für Kernphysik, (IKP), Darmsatdt, Germany
2.8. The INFN Laboratori Nazionali del Sud, (LNS), Italy
2.9. The Atomki Accelerator Center
2.10. Centre of Accelerators and Nuclear Analytical Methods Research Infrastructure (CANAM RI), Czech Republic
2.11. Bronowice Cyclotron Center (CCB) of the Institute of Nuclear Physics PAN, Krakow, Poland.
2.12. The Centro Nacional de Aceleradores (CNA), University of Seville, Spain
2.13. The Laboratory of Accelerators and Radiation Technologies (LATR) of Instituto Superior Técnico (IST), Portugal
2.14. The Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH) Tandem accelerator complex, Romania
2.15. Laboratory for Underground Nuclear Astrophysics (LUNA), Gran Sasso National Laboratories (GSNL, Italy
2.16. Felsenkeller underground accelerator laboratory, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany
2.17. Centre of Micro-Analysis of Materials (CMAM) at the Autonomous University of Madrid, Spain
2.18. The Tandem Accelerator Laboratory (TAL), Institute of Nuclear and Particle Physics (INPP) of the National Centre for Scientific Research “Demokritos” (NCSRD), Greece
2.19. Microanalytical Centre, Jožef Stefan Institute (MIC, JSI), Slovenia
3. Conclusions
References
- [Online]. Available: https://www.esfri.eu/esfri-roadmap.
- NuPECC, "The Nuclear Physics European Collaboration Committee (NuPECC) Long Range Plan," 2017. [Online]. Available: https://www.esf.org/fileadmin/user_upload/esf/Nupecc-LRP2017.pdf.
- [Online]. Available: https://www.ikp.uni-koeln.de/en/institute/facilities/accelerators.
- L. Netterdon et al, Nucl. Instrum. Methods Phys. Res. A, vol. 100, p. 94, 2014.
- W. Hillebrandt et al, vol. 8, p. 116, 2013.
- G. Gyürky et al, Eur. Phys. J. A, vol. 41, p. 55, 2019.
- A. Spyrou et al, Phys. Rev. C, vol. 76, p. 015802, 2007.
- S. Galanopoulos et al, Phys. Rev. C, vol. 67, p. 015801, 2003.
- S. Pickstone et al, Nucl. Inst. and Meth. in Phys. Res. A, vol. 875, p. 104, 2017.
- E. Stokstad et al, Nucl. Phys. A, vol. 1, p. 145, 1970.
- [Online]. Available: https://www.slcj.uw.edu.pl/en/heavy-ion-laboratory-hil.
- [Online]. Available: https://www.slcj.uw.edu.pl/en/the-warsaw-igisol.
- [Online]. Available: https://www.slcj.uw.edu.pl/en/coulomb-excitation-at-the-warsaw-cyclotron.
- [Online]. Available: https://inis.iaea.org/collection/NCLCollectionStore/_Public/38/068/38068159.pdf.
- J. Mierzejewski et al, Nucl. Instrum. Methods Phys. Res. A, vol. 659, p. 84, 2011.
- P. Petkov et al, Nucl. Instr. Meth. A, vol. 431, p. 208, 1999.
- J. Perkowski et al, Rev. Sci. Inst., vol. 85, p. 043303, 2014.
- T. Morek et al, Phys. Rev. C, vol. 63, vol. 63, p. 034302, 2001.
- K. Wrzosek et al, Phys. Rev. C, vol. 86, p. 064305, 2012.
- E. Grodner et al, Phys. Rev. Let., vol. 97, p. 172501, 2006.
- E. Grodner et al, Phys. Lett. B, vol. 703, p. 46, 2011.
- E. Grodner et al, Phys. Rev. Let., vol. 120, p. 022502, 2018.
- E. Grodner et al, Phys. Rev. C, vol. 106, p. 014318, 2022.
- A. Stocchi et al, Nuclear Physics News, vol. 32 1, 2022., vol. 32 1, 2022.
- J. Wilson et al, Phys. Procedia, vol. 59, p. 31, 2014.
- [Online]. Available: https://alto.ijclab.in2p3.fr/en/instrumentation-en/bedo/.
- M. Lebois et al, Acta Phys. Pol. B, vol. 50, p. 3, 2019.
- J. Wilson et al, Nature, vol. 590, p. 566, 2021.
- J. Wilson, "Report for the conseil scientifique of the the in2p3," 2019. [Online]. Available: https://www.in2p3.cnrs.fr/sites/institut_in2p3/files/page/2019-07/5-Doc-WILSON.pdf.
- [Online]. Available: https://andromede.in2p3.fr/?lang=en.
- M. Heine et al, EPJ Web of Conferences, vol. 165, p. 01029, 2017.
- M. Rudigier et al, Nucl. Instrum. Meth. A, vol. 969, p. 163967, 2020.
- G. Fruet et al, PRL, vol. 124, p. 192701, 2020.
- I. Bogdanović Radović, Nuclear Physics News, vol. 30 2, 2020.
- A. Tumino et al, Annu. Rev. Nucl. Part. Sci, vol. 71, pp. 345-376, 2021.
- N. Soić et al, Europhys. Lett., vol. 34, p. 7, 1996.
- M. Freer et al., Phys. Rev. V, vol. 84, p. 034317, 2011.
- M. Venhart et al, Nuclear Physics News, vol. 33 1, 2023.
- A. Görgen et al, Eur. Phys. J. Plus, pp. 136-181, 2021.
- F. Zeiser et al, Nucl. Instr. Meth. A, vol. 985, p. 164678, 2021.
- M. Guttormsen et al, Nucl. Instr. Methods A, vol. 648, p. 168, 2011.
- T. Tornyi et al, Nucl. Instr. Methods A, vol. 738, p. 6, 2014.
- A. Schiller et al, Nucl. Instr. Methods A, vol. 447, p. 498, 2000.
- M. Guttormsen et al, Phys. Rev. C, vol. 88, p. 024307, 2013.
- S. Goriely et al, Eur. Phys. J. A, vol. 55, p. 172, 2019.
- F.-K. Thielemann, Eur. Phys. J. A, vol. 59, p. 12, 2023.
- A. Choplin et al, "A&A," vol. 667, p. A155, 2022.
- F. Hoyle, Astrophys. J. Suppl. Ser., vol. 1, p. 12, 1954.
- T. Kibédi et al, Phys. Rev. Lett, vol. 125, p. 182701, 2020.
- N. Pietralla, Nuclear Physics News, vol. 28 2, 2018.
- K. Sonnabend et al, Nucl. Instrum. Meth. Phys. Res. A, vol. 640, p. 6, 2011.
- N. Ryezayeva et al, Phys. Rev. Lett, vol. 100, p. 172501, 2008.
- M. Chernykh et al, Phys. Rev. Lett., vol. 105, p. 022501, 2010.
- C. Kremer et al, Phys. Rev. Lett., vol. 117, p. 172503, 2016.
- P. P von Neumann-Cosel et al, Phys. Rev. Lett., vol. 88, p. 202304, 2002.
- C. Walz et al, Nature, vol. 405, p. 526, 2015.
- "https://www.lns.infn.it/en/," [Online].
- M. Lattuada, Nuclear Physics News, vol. 22 1, 2012.
- A. Pagano et al, Nucl.Phys.A, vol. 734, pp. 504-511, 2004.
- E. Pagano et al, EPJ Web of Conferences, p. 10008, 2016.
- D. Dell’Aquila et al, EPJ Web of Conferences, vol. 117, p. 06011, 2016.
- N. Mortorana et al, IL NUOVO CIMENTO, vol. 41 C, p. 199, 2018.
- F. Cappuzzello et al, Eur. Phys. J. A, vol. 52, p. 167, 2016.
- L. Lamia et al, ApJ, vol. 811, p. 99, 2015.
- S. Romano et al, Eur. Phys. J. A, vol. 27, pp. 221-225, 2006.
- C. Spitaleri et al, Phys. Rev. C, vol. 90, p. 035801, 2014.
- S. Simonucci et al, ApJ, vol. 764, p. 118, 2013.
- L. Lamia et al, J. Phys. G: Nucl. Part. Phys., vol. 39, p. 015106, 2012.
- M. Cognata et al, Phys. Lett. B, vol. 826, p. 136917, 2022.
- R. Sparta et al, Eur. Phys. J. A, vol. 170, p. 57, 2021.
- G. Guardo, Eur. Phys. J A, vol. 59, p. 65, 2023.
- [Online]. Available: http://www.micronsemiconductor.co.uk/silicon-detector-catalogue/.
- N. Martorana et al, Front. Phys., vol. 10, p. 1058419, 2022.
- I. Vajda et al, AIP Conference Proceedings, vol. 1852, p. 060002, 2017.
- G. Kiss et al, J. Phys.: Conf. Ser., vol. 337, p. 012029, 2012.
- Z. Halász et al, Phys. Rev. C, vol. 94, p. 045801, 2016.
- G. Kiss et al, Phys. Rev. C, vol. 88, p. 045804, 2013.
- T. Szücs et al, Phys. Rev. C, vol. 100, p. 065803, 2019.
- T. Szegedi et al, J. Phys.: Conf. Ser., vol. 1668, p. 012041, 2020.
- G. Gyürky et al, Eur. Phys. J. A, vol. 59, p. 59, 2023.
- C. Bordeanu et al, Nucl .Phys. A, vol. 908, pp. 1-11, 2013.
- G. Gyürky et al, J. Phys. G: Nucl. Part. Phys., vol. 48, p. 105202, 2021.
- G. Gyürky et al, Eur. Phys. J A, vol. 59, p. 59, 2023.
- G. Gyürky et al, Phys. Rev. C, vol. 105, p. 022801, 2022.
- J. Krasznahorkay et al, Phys. Rev. Lett., vol. 116, p. 042501, 2016.
- D. Firak et al, EPJ Web of Conferences, vol. 232, p. 04005, 2020.
- A. Krasznahorkay et al, Phys. Rev. C, vol. 106, p. 061601.
- A. Krasznahorkay at al, Phys. Rev. C, vol. 106, p. 061601, 2022.
- B. Bastin et al, EPJ Web of Conferences, vol. 275, p. 01012, 2023.
- A. Macková et al, Eur. Phys. J. Plus, vol. 136, p. 558, 2021.
- A. Tumino et al, Astrophys J, vol. 785(2), p. 96, 2014.
- V. Burjan et al, Eur. Phys. J. A, vol. 55(7), no. 114, 2019.
- G. D’Agata et al, Phys. Rev. C, vol. 103(1), p. 015806, 2021.
- [Online]. Available: https://ccb.ifj.edu.pl/en.home.html.
- I. Ciepał et al, Phys. Rev. C, vol. 99, p. 014620, 2019.
- A. Maj et al, Nucl. Phys. A, vol. 571, p. 185, 1994.
- J. Łukasik et al, Nucl. Instrum. Methods Phys. Res. A, vol. 709, p. 120, 2013.
- A. Maj et al, "White Book on the Future of Low-Energy Nuclear Physics in Poland and the Development of the National Research Infrastructure," 2020.
- J. Gómez-Camacho et al, Eur. Phys. J. Plus, vol. 136, p. 273, 2021.
- A. Garzón-Camacho et al, IEEE Trans. Inst. Meas., vol. 64, p. 318, 2015.
- [Online]. Available: https://cna.us.es/index.php/en/facilities/financed-feder-funds/equipments/78-neutron-line.
- E. Alves et al, Eur. Phys. J. Plus, vol. 136, p. 684, 2021.
- D. Bucurescu et al, Nucl. nstr. and Meth. in Phys. Res. A, vol. 837, pp. 1-1, 2016.
- [Online]. Available: https://www.nipne.ro/.
- P. Mason et al, Phys. Rev. C, vol. 85, p. 064303, 2012.
- T. Alharbi et al, Appl. Radiat. Isot., vol. 70, p. 1337, 2012.
- C. Niţă et al, Phys. Rev. C, vol. 89, p. 064314, 2014.
- G. Bocchi et al, Phys. Rev. C, vol. 89, p. 054302, 2014.
- T. Alharbi et al, Phys. Rev. C, vol. 91, p. 027302, 2015.
- D. Deleanu et al, Phys. Rev. C, vol. 87, p. 014329, 2013.
- P. Mason et al, Phys. Rev. C, vol. 88, p. 044301, 2013.
- C. Thibault et al, Phys. Rev. C, vol. 12, p. 644, 1975.
- B. Wildenthal et al, Phys. Rev. C, vol. 22, p. 2260, 1980.
- E. Warburton et al, Phys. Rev. C, vol. 41, p. 1447, 1990.
- N. Orr et al, Phys. Lett. B, vol. 258, p. 29, 1991.
- F. Recchia et al, Phys. Rev. C, vol. 85, p. 064305, 2012.
- A. Oros-Peusquens, Nucl. Phys. A, vol. 669, p. 81, 2000.
- S. Leoni et al, Phys. Rev. Lett., vol. 118, p. 162502, 2017.
- R. Margineanu et al, Appl. Radiat. and Isot., vol. 66, p. 1501, 2008.
- L. Trache et al, EPJ Web of Conferences, vol. 227, 2020.
- D. Tudor et al, AIP Conf. Proc., vol. 2076, p. 060010, 2019.
- N. Zhang et al, Phys. Lett. B, vol. 803, p. 135278, 2020.
- N. Zhang et al, Phys. Lett. B, vol. 801, p. 135170, 2020.
- M. Aliotta et al, Annu. Rev. Nucl. Part. Sci., vol. 72, pp. 177-204, 2022.
- V. Mossa et al, Nature, vol. 587, pp. 210-213, 2020.
- M. Misiaszek et al., Appl. Radiat. Isot., vol. 81, p. 146, 2013.
- C. Bruno et al, Phys. Rev. Lett., vol. 117(14), p. 142502, 2016.
- C. Bruno et al, Phys. Lett. B, vol. 790, pp. 237-242, 2019.
- C. Bruno et al, Eur. Phys. J. A, vol. 51, p. 94, 2015.
- L. Csedreki et al, Nucl. Instrum. Meth. Phys. Res. A, vol. 994, p. 165081, 2021.
- G. Ciani et al, Phys. Rev. Lett., vol. 127(15), p. 152701, 2021.
- D. Scott et al, Phys. Rev. Lett., vol. 109(20), p. 202501, 2012.
- A. Di Leva et al, Phys. Rev. C, vol. 89(1), p. 015803, 2014.
- [Online]. Available: https://www.chetec-infra.eu/ta/tna-labs/felsenkeller/.
- T. Szücs et al, Eur. Phys. J. A, vol. 55, p. 174, 2019.
- A. Redondo-Cubero et al, Eur. Phys. J. Plus, vol. 136, p. 175, 2021.
- L. Fraile et al, Nucl. Instrum. Methods Phys. Res. A, vol. 513(1), p. 287, 2003.
- M. Carmona-Gallardo et al, Phys. Rev. C, vol. 86(3), p. 032801, 2012.
- M. Alcorta et al, Phys. Rev. C, vol. 86(6), p. 064306, 2012.
- S. Harissopulos et al, Eur. Phys. J. Plus, vol. 136, p. 617, 2021.
- S. Harissopulos, Eur. Phys. J. Plus, vol. 133, p. 332, 2018.
- V. Foteinou et al, Eur. Phys. J. A, vol. 55, p. 67, 2019.
- N. Medina et al, APH N.S. Heavy Ion Phys., vol. 2141, 1995.
- S. Harissopulos et al, Phys. Rev. C, vol. 72, p. 062801, 2005.
- S. Harissopulos et al, Phys. Rev. C, vol. 87, p. 025806, 2013.
- R. Vlastou et al, Phys. Proc., vol. 66, p. 425, 2015.
- A. Kalamara et al, Eur. Phys. J. A, vol. 55, p. 187, 2019.
- K. Preketes-Siglas et al, vol. 368, p. 71, 2016.
- K. Preketes-Sigalas et al, Nucl. Instrum. Methods Phys. Res. B, vol. 368, p. 71, 2016.
- J. Vesic, Nuclear Physics News, Vols. 32, 3, 2022.
- F. Raiola et al, Eur. Phys. J. A, vol. 19, p. 283, 2004.
- M. Lipoglavšek et al, Phys. Lett. B, vol. 773, p. 553, 2017.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).