Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Energy Accumulation Law of Different Forms of Coal-Rock Com-Binations

Version 1 : Received: 2 October 2023 / Approved: 3 October 2023 / Online: 3 October 2023 (09:05:37 CEST)
Version 2 : Received: 3 October 2023 / Approved: 6 October 2023 / Online: 6 October 2023 (11:45:55 CEST)

A peer-reviewed article of this Preprint also exists.

Li, Z.; Zhang, G.; Li, Y.; Zhou, W.; Qin, T.; Zeng, L.; Liu, G. Energy Accumulation Law of Different Forms of Coal–Rock Combinations. Appl. Sci. 2023, 13, 11393. Li, Z.; Zhang, G.; Li, Y.; Zhou, W.; Qin, T.; Zeng, L.; Liu, G. Energy Accumulation Law of Different Forms of Coal–Rock Combinations. Appl. Sci. 2023, 13, 11393.

Abstract

This paper aims to investigate the coal thickness change area of the combined rock strata energy accumulation law. The method of connecting a uniaxial compression experiment with a theoret-ical analysis is used in this work. We employ a combination of coal and rock to carry out our studies. We investigate how different lithologies and ratios of coal-rock height affect the me-chanical properties of the mixture and the law governing energy accumulation. We have deter-mined the following facts: (1) The combination's peak strength and elastic modulus exceed that of coal and are inferior to that of rock but are nearer to that of coal. (2) When the coal-rock height ratios are dissimilar, the peak strength and modulus of elasticity of the combination show a negative correlation with the coal-thickness share, and the pre-peak energy accumulation and impact energy index of the combination shows a positive correlation with the coal-thickness share. (3) For the combination with the same coal-rock height ratio, the peak strength, elastic modulus, pre-peak energy accumulation, and impact energy index all increase with greater rock strength and elastic modulus. The presence of a hard rock layer affects the accumulation of pre-peak energy. ( 4 ) The stress in the surrounding rock gradually decreases as the coal thick-ness increases. In the area where coal thickness declines, the stress in surrounding rock is higher than that in the region where it thickens. The energy stored in the surrounding rock is directly proportional to the coal in the zone. Conversely, areas with thinner coal deposits exhibit a lower energy storage capacity in the surrounding rock than those with thicker coal deposits. The stress distribution of surrounding rock in coal thickness change is abnormal; substantial energy accu-mulation can swiftly initiate dynamic disasters, such as rock bursts. This study has important reference significance for preventing and controlling rock burst in coal thickness change areas.

Keywords

Coal thickness change; Combination; Combined rock strata; Energy accumulation; Rock burst

Subject

Engineering, Mining and Mineral Processing

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.