Submitted:
13 December 2023
Posted:
14 December 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Xenosialylation
Recurring Complications Related to Viral Infections: Autoimmune Disorders
Adverse Reactions After SARS-CoV2 Vaccination
Discussion
Conclusions and Future Directions
Author Contributions
Funding
Ethics approval and consent to participate
Consent for publication
Data Availability Statement
Acknowledgements
Conflicts of Interest
References
- Schauer, R.; Kamerling, J.P. Exploration of the Sialic Acid World. Adv Carbohydr Chem Biochem. 2018, 75, 1–213. [Google Scholar] [PubMed]
- Schauer, R. . Chemistry, metabolism, and biological functions of sialic acids. Adv. Carbohydr. Chem. Biochem. 1982, 40, 131–234. [Google Scholar] [CrossRef]
- Varki, A. Biological roles of glycans. Glycobiology, 2017, 27, 3–49. [Google Scholar] [CrossRef] [PubMed]
- Severi, E.; Hood, D.W.; Thomas, G.H. Sialic acid utilization by bacterial pathogens. Microbiology. 2007, 153, 2817–2822. [Google Scholar] [CrossRef] [PubMed]
- Schauer, R. Sialic acids: Fascinating sugars in higher animals and man. Zoology 2004, 107, 49–64. [Google Scholar] [CrossRef]
- Brunngraber, E.G. Biochemistry, Function, and Neuropathology of the Glycoproteins in Brain Tissue. In Functional and Structural Proteins of the Nervous System; Advances in Experimental Medicine and Biology; Davison, A.N., Mandel, P., Morgan, I.G., Eds.; Springer: Boston, MA, 1972; Volume 32. [Google Scholar]
- Wang, B.; Miller, B.J. The role and potential of sialic acid in human nutrition. Eur J Clin Nutr 2003, 57, 1351–1369. [Google Scholar] [CrossRef] [PubMed]
- Wang, B. Sialic acid is an essential nutrient for brain development and cognition. Annu. Rev. Nutr. 2009, 29, 177–222. [Google Scholar] [CrossRef]
- Liao, H.; Klaus, C.; Neumann, H. Control of Innate Immunity by Sialic Acids in the Nervous Tissue. Int. J. Mol. Sci. 2020, 21, 5494. [Google Scholar] [CrossRef]
- Varki, A. Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology. 2011, 21, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Wang X, Mitra N, Secundino I, Banda K, Cruz P, Padler-Karavani V, Verhagen A, Reid C, Lari M, Rizzi E, Balsamo C, Corti G, De Bellis G, Longo L; NISC Comparative Sequencing Program; Beggs W, Caramelli D, Tishkoff SA, Hayakawa T, Green ED, Mullikin JC, Nizet V, Bui J, Varki A. Specific inactivation of two immunomodulatory SIGLEC genes during human evolution. Proc Natl Acad Sci U S A. 2012, 109, 9935–9940. [CrossRef] [PubMed]
- Chen H.Y., Fermin A., Vardhana S., Weng I.C., Lo K.F., Chang E.Y.,] et al. Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proc Natl Acad Sci U S A 2009, 106, 14496–14501. [CrossRef] [PubMed]
- Alter, G.; Ottenhoff, T.H.M.; Joosten, S.A. Antibody glycosylation in inflammation, disease and vaccination. Semin. Immunol., 2018, 39, pp. 102–110 ISSN 1044. [Google Scholar] [CrossRef]
- Pillai S., Netravali I.A., Cariappa A., Mattoo H.. Siglecs and immune regulation. Annu Rev Immunol, 2012, 30, pp. 357–392.
- Maverakis, E.; Kim, K.; Shimoda, M.; Gershwin, M.E.; Patel, F.; Wilken, R.; Raychaudhuri, S.; Ruhaak, L.R.; Lebrilla, B.C. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: A critical review. J. Autoimmun. 2015, 57, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wong AHY, Fukami Y, Sudo M, et al, Sialylated IgG-Fc: a novel biomarker of chronic inflammatory demyelinating polyneuropathy. Journal of Neurology, Neurosurgery & Psychiatry 2016, 87, 275–279.
- Sorensen, A.L.; Rumjantseva, V.; Nayeb-Hashemi, S.; Clausen, H.; Hartwig, J.H.; Wandall, H.H.; Hoffmeister, K.M. Role of sialic acid for platelet life span: exposure of beta-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. Blood 2009, 114, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Byrd-Leotis, L.; Cummings, R.D.; Steinhauer, D.A. The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase. Int. J. Mol. Sci. 2017, 18, 1541. [Google Scholar] [CrossRef] [PubMed]
- Bergfeld, A.K.; Oliver, M.T. Pearce, Sandra L. Diaz, Tho Pham, Ajit Varki. Metabolism of Vertebrate Amino Sugars with N-Glycolyl Groups: elucidating the intracellular fate of the non-human sialic acid N-glycolylneuraminic acid. Journal of Biological Chemistry 2012, 287, 28865–28881. [CrossRef] [PubMed]
- Chou H.H., Takematsu H., Diaz S., Iber J., Nickerson E., Wright K.L., Muchmore E.A., Nelson D.L., Warren S.T., Varki A.. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc. Natl. Acad. Sci. USA. 1998, 95, 11751–11756. [CrossRef]
- Irie, A.; Koyama, S.; Kozutsumi, Y.; Kawasaki, T. Suzuki AThe molecular basis for the absence of N-glycolylneuraminic acid in humans, J. Biol. Chem. 1998, 273, 15866–15871. [Google Scholar] [CrossRef]
- Merrick, J.M.; Zadarlik, K.; Milgrom, F. Characterization of the Hanganutziu-Deicher [serum-sickness] antigen as gangliosides containing N-glycolylneuraminic acid. Int. Arch. Allergy Appl. Immunol. 1978, 57, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Dicker, M.; Strasser, R. Using glyco-engineering to produce therapeutic proteins. Expert Opin. Biol. 2015, 15, 1501–1516. [Google Scholar] [CrossRef]
- Hombu, R.; Neelamegham, S.; Park, S. Cellular and Molecular Engineering of Glycan Sialylation in Heterologous Systems. Molecules. 2021, 26, 5950. [Google Scholar] [CrossRef]
- Oetke, C.; Hinderlich, S.; Brossmer, R.; Reutter, W.; Pawlita, M.; Keppler, O.T. Evidence for efficient uptake and incorporation of sialic acid by eukaryotic cells. European Journal of Biochemistry 2001, 268, 4553–4561. [Google Scholar] [CrossRef]
- Bardor, M.; Nguyen, D.H.; Diaz, S.; Varki, A. Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J Biol Chem. 2005, 280, 4228–4237. [Google Scholar] [CrossRef]
- Collins, B.E.; Fralich, T.J.; Itonori, S.; Ichikawa, Y.; Schnaar, R.L. Conversion of cellular sialic acid expression from N-acetyl- to N-glycolylneuraminic acid using a synthetic precursor, N-glycolylmannosamine pentaacetate: Inhibition of myelin-associated glycoprotein binding to neural cells. Glycobiology 2000, 10, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Tangvoranuntakul P., Gagneux P., Diaz S., Bardor M., Varki N., Varki A., Muchmore E.. Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc. Natl. Acad. Sci. USA. 2003, 100, 12045–12050. [CrossRef] [PubMed]
- Paul, A.; Padler-Karavani, V. Evolution of sialic acids: Implications in xenotransplant biology. Xenotransplantation 2018, 25, e12424. [Google Scholar] [CrossRef] [PubMed]
- Galili, U. Human Natural Antibodies to Mammalian Carbohydrate Antigens as Unsung Heroes Protecting against Past, Present, and Future Viral Infections. Antibodies 2020, 9, 25. [Google Scholar] [CrossRef]
- Padler-Karavani, V.; Yu, H.; Cao, H.; Chokhawala, H.; Karp, F.; Varki, N.; Chen, X.; Varki, A. Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology. 2008, 18, 818–830. [Google Scholar] [CrossRef]
- Dhar C, Sasmal A and Varki A From “Serum Sickness” to “Xenosialitis”: Past, Present, and Future Significance of the Non-human Sialic Acid Neu5Gc. Front. Immunol. 2019, 10, 807. [CrossRef] [PubMed]
- Zhu, A.; Hurst, R. Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum. Xenotransplantation 2002, 9, 376–381. [Google Scholar] [CrossRef]
- 34. Taylor RE, Gregg CJ, Padler-Karavani V, et al, Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J Exp Med. 2010, 207, 1637–1646. [CrossRef]
- Berger, P.K.; Plows, J.F.; Jones, R.B.; Alderete, T.L.; Yonemitsu, C.; Poulsen, M.; Ryoo, J.H.; Peterson, B.S.; Bode, L.; Goran, M.I. Human milk oligosaccharide 2'-fucosyllactose links feedings at 1 month to cognitive development at 24 months in infants of normal and overweight mothers. PLoS One. 2020, 15, e0228323. [Google Scholar] [CrossRef] [PubMed]
- Zaramela, L.S.; Martino, C.; Alisson-Silva, F.; Rees, S.D.; Diaz, S.L.; Chuzel, L.; Ganatra, M.B.; Taron, C.H.; Secrest, P.; Zuñiga, C.; Huang, J.; Siegel, D.; Chang, G.; Varki, A.; Zengler, K. Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates. Nat. Microbiol. 2019, 4, 2082–2089. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, K.; Mukai, T. Sialic acid impact on the gut microbiome and function Glycoforum. 2022, 25, A3. [Google Scholar] [CrossRef]
- 38. Byres E, Paton AW, Paton JC, et al, Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature. 2008, 456, 648–652. [CrossRef] [PubMed]
- Huang, Y.L.; Chassard, C.; Hausmann, M.; von Itzstein, M.; Hennet, T. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat. Commun. 2015, 6, 8141. [Google Scholar] [CrossRef]
- Jennings, M.P.; Day, C.J.; Atack, J.M. How bacteria utilize sialic acid during interactions with the host: snip, snatch, dispatch, match and attach. Microbiology. 2022, 168. [Google Scholar] [CrossRef]
- Hedlund, M.; Padler-Karavani, V.; Varki, N.M.; Varki, A. Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc. Natl. Acad. Sci. USA. 2008, 105, 18936–18941. [Google Scholar] [CrossRef]
- Stenström, G.; Gottsäter, A.; Bakhtadze, E.; Berger, B.; Sundkvist, G. Latent Autoimmune Diabetes in Adults. Diabetes Dec 2005, 54, S68. [Google Scholar] [CrossRef] [PubMed]
- 43. Bashir S, Leviatan Ben Arye S, Reuven EM, Yu H, Costa C, Galiñanes M, et al, Presentation mode of glycans affect recognition of human serum anti-Neu5Gc IgG antibodies. Bioconjug Chem. 2018, 30, 161–168. [CrossRef] [PubMed]
- Löfvenborg, J.E., Ahlqvist, E., Alfredsson, L. et al, Consumption of red meat, genetic susceptibility, and risk of LADA and type 2 diabetes. Eur J Nutr 2020. [CrossRef] [PubMed]
- Alisson-Silva F, Liu JZ, Diaz SL, Deng L, Gareau MG, Marchelletta R, et al, Human evolutionary loss of epithelial Neu5Gc expression and species-specific susceptibility to cholera. PLoS Pathog. 2018, 14, e1007133. [CrossRef]
- Rojas M, Restrepo-Jiménez P, Monsalve DM, et al, Molecular mimicry and autoimmunity. J Autoimmun. 2018, 95, 100–123. [CrossRef] [PubMed]
- Boligan, K.F.; Oechtering, J.; Keller, C.W.; Peschke, B.; Rieben, R.; Bovin, N.; Kappos, L.; Cummings, R.D.; Kuhle, J.; von Gunten, S.; Lünemann, J.D. Xenogeneic Neu5Gc and self-glycan Neu5Ac epitopes are potential immune targets in MS. Neurol Neuroimmunol Neuroinflamm. 2020, 7, e676. [Google Scholar] [CrossRef] [PubMed]
- Anaya, J.-M. The diagnosis and clinical significance of polyautoimmunity,Autoimmun. Rev. 13 2014, 423–426. [Google Scholar] [CrossRef] [PubMed]
- McGonagle, D.; McDermott, M.F. A proposed classification of the immunological diseases. PLoS Med. 2006, 3, e297. [Google Scholar] [CrossRef] [PubMed]
- Smatti, M.K.; Cyprian, F.S.; Nasrallah, G.K.; Al Thani, A.A.; Almishal, R.O.; Yassine, H.M. Viruses and autoimmunity: a review on the potential interaction and molecular mechanisms. Viruses. 2019, 11, 762–880. [Google Scholar] [CrossRef]
- DiMaggio, D.; Anderson, A.; Bussel, J.B. Cytomegalovirus can make immune thrombocytopenic purpura refractory. Br. J. Haematol. 2009, 146, 104–112. [Google Scholar] [CrossRef]
- 52. Chen J, Zhang H, Chen P, et al, Correlation between systemic lupus erythematosus and cytomegalovirus infection detected by different methods. Clin Rheumatol. 2015, 34, 691–698. [CrossRef] [PubMed]
- Moon, U.Y.; Park, S.J.; Oh, S.T.; Kim, W.U.; Park, S.H.; Lee, S.H.; Cho, C.S.; Kim, H.Y.; Lee, W.K.; Lee, S.K. Patients with systemic lupus erythematosus have abnormally elevated epstein-barr virus load in blood. Arthritis Res. 2004, 6, R295–R302. [Google Scholar] [CrossRef] [PubMed]
- Houen, G. and Trier, N.H., Epstein-Barr virus and systemic autoimmune diseases. Frontiers in immunology 2021, 3334. [Google Scholar]
- Yokochi, T.; Yanagawa, A.; Kimura, Y.; Mizushima, Y. High titer of antibody to the epstein-barr virus membrane antigen in sera from patients with rheumatoid arthritis and systemic lupus erythematosus. J. Rheumatol. 1989, 16, 1029–1032. [Google Scholar]
- Ramondetti F., Sacco S., Comelli M., Bruno G., Falorni A., Iannilli A., d’Annunzio G., Iafusco D., Songini M., Toni S., et al, Type 1 diabetes and measles, mumps and rubella childhood infections within the italian insulin-dependent diabetes registry. Diabet. Med. 2012, 29, 761–766. [CrossRef] [PubMed]
- Honkanen H., Oikarinen S., Nurminen N., Laitinen O.H., Huhtala H., Lehtonen J., Ruokoranta T., Hankaniemi M.M., Lecouturier V., Almond J.W., et al, Detection of enteroviruses in stools precedes islet autoimmunity by several months: Possible evidence for slowly operating mechanisms in virus-induced autoimmunity. Diabetologia. 2017, 60, 424–431.
- Salmi, A.; Ziola, B.; Hovi, T.; Reunanen, M. Antibodies to coronaviruses oc43 and 229e in multiple sclerosis patients. Neurology. 1982, 32, 292–295. [Google Scholar] [CrossRef]
- Stewart, J.N.; Mounir, S.; Talbot, P.J. Human coronavirus gene expression in the brains of multiple sclerosis patients. Virology. 1992, 191, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Magdi, M.; Rahil, A. Severe immune thrombocytopenia complicated by intracerebral haemorrhage associated with coronavirus infection: A case report and literature review. Eur. J. Case Rep. Intern. Med. 2019, 6, 001155. [Google Scholar]
- Moody, R.; Wilson, K.; Flanagan, K.L.; Jaworowski, A.; Plebanski, M. Adaptive Immunity and the Risk of Autoreactivity in COVID-19. Int J Mol Sci. 2021, 22, 8965. [Google Scholar]
- Chang R., Yen-Ting Chen T., Wang S-I, HungY-M, Chen H-Y, Wei C-C-J,.Risk of autoimmune diseases in patients with COVID-19: A retrospective cohort study, eClinicalMedicine. Volume 2023, 56, 101783.
- . [CrossRef]
- Hosseini, P.; Fallahi, M.S.; Erabi, G.; Pakdin, M.; Zarezadeh, S.M.; Faridzadeh, A.; Entezari, S.; Ansari, A.; Poudineh, M.; Deravi, N. Multisystem Inflammatory Syndrome and Autoimmune Diseases Following COVID-19: Molecular Mechanisms and Therapeutic Opportunities. Front Mol Biosci. 2022, 9, 804109. [Google Scholar] [CrossRef] [PubMed]
- Sheikh A. B., Chourasia P. K., Javed N., Chourasia M. K., Suriya S. S., Upadhyay S., et al, Association of Guillain-Barre Syndrome with COVID-19 Infection: An Updated Systematic Review. J. Neuroimmunology 2021, 355, 577577–10. [CrossRef] [PubMed]
- Saad M. A., Alfishawy M., Nassar M., Mohamed M., Esene I. N., Elbendary A. COVID-19 and Autoimmune Diseases: A Systematic Review of Reported Cases. Crr 2174, 17, 193–204.
- Toscano, G., Palmerini, F., Ravaglia, S., Ruiz, L., Invernizzi, P., Cuzzoni, M.G., Franciotta, D., Baldanti, F., Daturi, R., Postorino, P. and Cavallini, A., Guillain–Barré syndrome associated with SARS-CoV-2. New England Journal of Medicine 2020, 382, 2574–2576.
- Novelli, L., Motta, F., De Santis, M., Ansari, A.A., Gershwin, M.E. and Selmi, C., The JANUS of chronic inflammatory and autoimmune diseases onset during COVID-19–A systematic review of the literature. Journal of autoimmunity, 2021, 117, p102592. [CrossRef] [PubMed]
- Garjani A., Middleton R. M., Hunter R., Tuite-Dalton K. A., Coles A., Dobson R., et al. COVID-19 Is Associated with New Symptoms of Multiple Sclerosis that Are Prevented by Disease Modifying Therapies. Mult. Scler. Relat. Disord. 2021, 52, 102939–10. [CrossRef] [PubMed]
- Bonometti R., Sacchi M. C., Stobbione P., Lauritano E. C., Tamiazzo S., Marchegiani A., et al. The First Case of Systemic Lupus Erythematosus [SLE] Triggered by COVID-19 Infection. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9695–9697.
- Slimani, Y.; Abbassi, R.; El Fatoiki, F.Z.; Barrou, L.; Chiheb, S. Systemic Lupus Erythematosus and Varicella-like Rash Following COVID-19 in a Previously Healthy Patient. J. Med. Virol. 2021, 93, 1184–1187. [Google Scholar] [CrossRef]
- Zamani, B.; Moeini Taba, S.-M.; Shayestehpour, M. Systemic Lupus Erythematosus Manifestation Following COVID-19: a Case Report. J. Med. Case Rep. 2021, 15, 29. [Google Scholar] [CrossRef]
- Gracia-Ramos, A.E.; Saavedra-Salinas M, Á. Can the SARS-CoV-2 Infection Trigger Systemic Lupus Erythematosus? A Case-Based Review. Rheumatol. Int. 2021, 41, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Beato R., Morales-Ortega A., Fernández F. J. D. l. H., Morón A. I. P., Ríos-Fernández R., Rubio J. L. C., et al. Immune Thrombocytopenia and COVID-19: Case Report and Review of Literature. Lupus 2021, 30, 1515–1521.
- Casciola-Rosen, L.; Thiemann, D. R.; Andrade, F.; Trejo Zambrano, M. I.; Hooper, J. E.; Leonard, E.; Spangler, J.; Cox, A. L.; Machamer, C.; Sauer, L.; Laeyendecker, O.; Garibaldi, B. T.; Ray, S. C.; Mecoli, C.; Christopher-Stine, L.; Gutierrez-Alamillo, L.; Yang, Q.; Hines, D.; Clarke, W.; Rothman, R. E.; Pekosz, A.; Fenstermacher, K.; Wang, Z.; Zeger, S. L.; Rosen, A. IgM autoantibodies recognizing ACE2 are associated with severe COVID-19. medRxiv 2020, 2020. [Google Scholar]
- Civardi, C.; Collini, A.; Geda, D. J.; Geda, C. , Antiganglioside antibodies in Guillain-Barré syndrome associated with SARS-CoV-2 infection. J Neurol Neurosurg Psychiatry 2020, jnnp-2020-324279. [Google Scholar] [CrossRef] [PubMed]
- Franke, C.; Ferse, C.; Kreye, J.; Reincke, M.; Sanchez-Sendin, E.; Rocco, A.; Steinbrenner, M.; Angermair, S.; Treskatsch, S.; Zickler, D.; Eckardt, K.-U.; Dersch, R.; Hosp, J.; Audebert, H. J.; Endres, M.; Ploner, C. J.; Pruess, H. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. medRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Casals, M.; Brito-Zerón, P.; Mariette, X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat Rev Rheumatol. 2021, 17, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, N.; Rezaei, N. Autoimmune complications of COVID-19. J. Med. Virol., 2021, 94, pp. 54–62, 101002/jmv27292. [Google Scholar] [CrossRef]
- Diaz, P.; Leveque, M.; Hautecloque, G.; Sellal, F.; Augereau, O.; Lita, L.; Biegle, E.; Belilita, L.; Bouterra, C.; Rerat, P.; Alvarez-Gonzalez, A.; Martinot, M.; Gerber, V. The challenge of diagnosing Guillain-Barre syndrome in patients with COVID-19 in the intensive care unit. J Neuroimmunol. 2022, 366, 577842. [Google Scholar] [CrossRef] [PubMed]
- 81. Qin C, Zhou L, Hu Z, et al, Dysregulation of immune response in patients with coronavirus 2019 [COVID-19] in Wuhan, China. Clin Infect Dis. 2020, 71, 762–768. [CrossRef]
- Butler, D.L.; Gildersleeve, J.C. Abnormal antibodies to self-carbohydrates in SARS-CoV-2 infected patients. bioRxiv [Preprint]. 2020, 20, 341479. [Google Scholar] [CrossRef]
- Ortona, E.; Malorni, W. Long COVID: to investigate immunological mechanisms and sex/gender related aspects as fundamental steps for tailored therapy. Eur Respir J. 2022, 59, 2102245. [Google Scholar] [CrossRef] [PubMed]
- Dupuis ML, Maselli A, Pagano MT, et al. Immune response and autoimmune diseases: a matter of sex. Ital J Gender Specific Med 2019, 5, 11–20.
- Klein, S.; Flanagan, K. Sex differences in immune responses. Nat Rev Immunol 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Morniroli, D.; Giannì, M.L.; Consales, A.; Pietrasanta, C.; Mosca, F. Human Sialome and Coronavirus Disease-2019 [COVID-19] Pandemic: An Understated Correlation? Front. Immunol. 2020, 11, 1480. [Google Scholar] [CrossRef] [PubMed]
- Torres-Acosta, M.A.; Singer, B.D. Pathogenesis of COVID-19-induced ARDS: implications for an ageing population. Eur Respir J. 2020, 56, 2002049. [Google Scholar] [CrossRef] [PubMed]
- Schulert GS, Zhang M, Fall N, et al. Whole-exome sequencing reveals mutations in genes linked to hemophagocytic lymphohistiocytosis and macrophage activation syndrome in fatal cases of H1N1 influenza. J Infect Dis 2016, 213, 1180–1188. [CrossRef] [PubMed]
- Lerkvaleekul, B.; Vilaiyuk, S. Macrophage activation syndrome: early diagnosis is key. Open Access Rheumatol 2018, 10, 117–128. [Google Scholar] [CrossRef]
- Crayne CB, Albeituni S, Nichols KE, et al. The immunology of macrophage activation syndrome. Front Immunol 2019, 10, 119. [CrossRef]
- Verdoni, L. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020, 395, 1771–1778. [Google Scholar] [CrossRef]
- Rowley, A.H. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nat Rev Immunol 2020, 20, 453–454. [Google Scholar] [CrossRef]
- Hernàndez, A.F.; Calina, D.; Poulas, K.; Docea, A.O.; Tsatsakis, A.M. Safety of COVID-19 vaccines administered in the EU: should we be concerned? Toxicol. Rep. 2021, 8, 871–879. [Google Scholar] [CrossRef] [PubMed]
- 94. Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. Eur Rev Med Pharmacol Sci. 2021, 25, 1663–1669. [CrossRef] [PubMed]
- Gee J, Marquez P, Su J, Calvert GM, Liu R, Myers T, et al, First Month of COVID-19 Vaccine Safety Monitoring- United States, , 2020-January 13, 2021. MMWR Morbidity and Mortality Weekly Report 2021, 70, 283–288. [CrossRef] [PubMed]
- European Medicines Agency [EMA]. Pharmacovigilance Plan of the EU Regulatory Network for COVID-19 Vaccines. 2020.
- Bril, F.; Al Diffalha, S.; Dean, M.; Fettig, D.M. Autoimmune Hepatitis Developing after Coronavirus Disease 2019 [COVID-19] Vaccine: Causality or Casualty? J. Hepatol. 2021, 75, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Dotan, A.; Shoenfeld, Y. Perspectives on vaccine induced thrombotic thrombocytopenia. J Autoimmun. 2021, 121, 102663. [Google Scholar] [CrossRef] [PubMed]
- Cimolai, N. Untangling the Intricacies of Infection, Thrombosis, Vaccination, and Antiphospholipid Antibodies for COVID-19 [published online ahead of print, 2021, Jun 22]. SN Compr Clin Med. 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Segal, Y.; Shoenfeld, Y. Vaccine-induced autoimmunity: the role of molecular mimicry and immune crossreaction. Cell Mol Immunol 2018, 15, 586–594. [Google Scholar] [CrossRef]
- Chen, P.W.; Tsai, Z.Y.; Chao, T.H.; Li, Y.H.; Hou, C.J.; Liu, P.Y. Addressing Vaccine-Induced Immune Thrombotic Thrombocytopenia [VITT] Following COVID-19 Vaccination: A Mini-Review of Practical Strategies. Acta Cardiol Sin. 2021, 37, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Bostan, E.; Yalici-Armagan, B.J. Herpes zoster following inactivated COVID-19 vaccine: A coexistence or coincidence? Cosmet. Dermatol. 2021. [CrossRef]
- Isai, A.; Durand, J.; Le Meur, S.; Hidalgo-Simon, A.; Kurz, X. Autoimmune disorders after immunisation with Influenza A/H1N1 vaccines with and without adjuvant: EudraVigilance data and literature review. Vaccine. 2012, 30, 7123–7129. [Google Scholar] [CrossRef] [PubMed]
- Perricone, C.; Ceccarelli, F.; Nesher, G.; Borella, E.; Odeh, Q.; Conti, F.; Shoenfeld, Y.; Valesini, G. Immune thrombocytopenic purpura [ITP] associated with vaccinations: a review of reported cases. Immunol Res. 2014, 60, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Furer, V.; Zisman, D.; Kibari, A.; Rimar, D.; Paran, Y.; Elkayam, O. Herpes zoster following BNT162b2 mRNA Covid-19 vaccination in patients with autoimmune inflammatory rheumatic diseases: A case series. Rheumatology. 2021. [CrossRef] [PubMed]
- Machado, B.A.S.; Hodel, K.V.S.; Fonseca, L.M.D.S.; Pires, V.C.; Mascarenhas, L.A.B.; da Silva Andrade, L.P.C.; Moret, M.A.; Badaró, R. The Importance of Vaccination in the Context of the COVID-19 Pandemic: A Brief Update Regarding the Use of Vaccines. Vaccines [Basel]. 2022, 10, 591. [Google Scholar] [CrossRef] [PubMed]
- Ciarambino, T.; Barbagelata, E.; Corbi, G.; Ambrosino, I.; Politi, C.; Lavalle, F.; Ruggieri, A.; Moretti, A.M. Gender differences in vaccine therapy: where are we in COVID-19 pandemic? Monaldi Arch. Chest Dis 2021. [Google Scholar] [CrossRef] [PubMed]
- 108. Jensen A, Stromme M, Moyassari S, Chadha AS, Tartaglia MC, Szoeke C, Ferretti MT. COVID-19 vaccines: Considering sex differences in efficacy and safety. Contemp Clin Trials. 2022, 115, 106700. [CrossRef] [PubMed]
- Ciccone, A. SARS-CoV-2 vaccine-induced cerebral venous thrombosis. Eur J Intern Med. 2021, 89, 19–21. [Google Scholar] [CrossRef]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N Engl J Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Condorelli, A.; Markovic, U.; Sciortino, R.; Di Giorgio, M.A.; Nicolosi, D.; Giuffrida, G. Immune Thrombocytopenic Purpura Cases Following COVID-19 Vaccination. Mediterr J Hematol Infect Dis. Published 2021 Mar 1. 2021, 13, e2021047. [Google Scholar] [CrossRef]
- Di Pietro, M.; Dono, F.; Consoli, S.; Evangelista, G.; Pozzilli, V.; Calisi, D.; Barbone, F.; Bonanni, L.; Onofrj, M.; De Angelis, M.V.; Sensi, S.L. Cerebral venous thrombosis without thrombocytopenia after a single dose of COVID-19 [Ad26.COV2.S] vaccine injection: a case report. Neurol Sci. 2022, 43, 2951–2929. [Google Scholar] [CrossRef]
- Casucci G, Acanfora D. DIC-Like Syndrome Following Administration of ChAdOx1 nCov-19 Vaccination. Viruses 2021, 13, 1046. [CrossRef] [PubMed]
- Alnima T.· Mulder M.M.G.· van Bussel B.C.T.· ten Cate H. COVID-19 Coagulopathy: From Pathogenesis to Treatment. Acta Haematol 2022, 145, 282–296. [CrossRef] [PubMed]
- Barnes, G.D.; Cuker, A.; Piazza, G.; Siegal, D. Vaccine-induced thrombotic thrombocytopenia [VITT] and COVID-19 vaccines: what cardiovascular clinicians need to know. Cardiology Magazine [online] 2021. [Google Scholar]
- The International Society on Thrombosis and Haemostasis. ISTH Interim Guidance for the Diagnosis and Treatment on Vaccine-Induced Immune Thrombotic Thrombocytopenia. [Internet].
- Furie KL, Cushman M, Elkind MSV, Lyden PD, Saposnik G; American Heart Association/American Stroke Association Stroke Council Leadership. Diagnosis and management of cerebral venous sinus thrombosis with vaccine-induced immune thrombotic thrombocytopenia. Stroke. 2021, 52, 2478–2482. [CrossRef] [PubMed]
- Scully M, Singh D, Lown R, et al, Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021, 384, 2202–2211. [CrossRef] [PubMed]
- Oldenburg, J.; Klamroth, R.; Langer, F.; Albisetti, M.; von Auer, C.; Ay, C.; Korte, W.; Scharf, R.E.; Pötzsch, B.; Greinacher, A. Diagnosis and Management of Vaccine-Related Thrombosis following AstraZeneca COVID-19 Vaccination: Guidance Statement from the GTH. Hamostaseologie 2021. [Google Scholar]
- Fraser DD, Patterson EK, Slessarev M, Gill SE, Martin C, Daley M, et al, Endothelial injury and glycocalyx degradation in critically Ill coronavirus disease 2019 patients: implications for microvascular platelet aggregation. Crit Care Explor. 2020, 2, e0194. [CrossRef] [PubMed]
- Ochsenbein, A.F.; Fehr, T.; Lutz, C.; Suter, M.; Brombacher, F.; Hengartner, H.; Zinkernagel, R.M. Control of early viral and bacterial distribution and disease by natural antibodies. Science 1999, 286, 2156–2159. [Google Scholar] [CrossRef]
- Goulabchand, Radjiv, et al. "Impact of autoantibody glycosylation in autoimmune diseases.". Autoimmunity reviews 2014, 13, 742–750. [CrossRef]
- Khamsi, R. Rogue antibodies could be driving severe COVID-19. Nature 2021, 590, 29–31. [Google Scholar] [CrossRef]
- Latreille, E.; Lee, W.L. Interactions of Influenza and SARS-CoV-2 with the Lung Endothelium: Similarities, Differences, and Implications for Therapy. Viruses. 2021, 13, 161. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S.; Hu, F.B.; Tappy, L.; Brand-Miller, J. Dietary carbohydrates: role of quality and quantity in chronic disease. BMJ. 2018, 361, k2340. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Klein, R.S. Sex drives dimorphic immune responses to viral in-fections. J Immunol 2017, 198, 178–1790. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
