Submitted:
20 September 2023
Posted:
21 September 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Implications of “Alphabet” Selenoproteins in the Pathology of Diseases
2.1. Implications of Selenoproteins in Cardiovascular Diseases
2.2. Implications of Selenoproteins in Liver Diseases
2.3. Implications of Selenoproteins in Intestinal Diseases
2.4. Implications of Selenoproteins in Cancer
2.5. Implications of Selenoproteins in Neurological Diseases
2.5.1. Implications of Selenoproteins in Alzheimer’s disease (AD)
2.5.2. Implications of Selenoproteins in Parkinson’s disease (PD)
2.5.3. Implications of Selenoproteins in Epilepsy
2.6. Implications of Selenoproteins in Muscle Diseases
2.7. Implications of Selenoproteins in Inflammation and Immune Response
2.8. Implications of Selenoproteins in Type 2 Diabetes Mellitus
2.9. Implications of Selenoproteins in Obesity
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- T C Stadtman. Selenium biochemistry. Science, 1974, 183, 915–922. [Google Scholar] [CrossRef]
- Labunskyy, V. M.; Hatfield, D. L.; Gladyshev, V. N. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. [CrossRef]
- Rayman, M. P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Kieliszek, M. Selenium–fascinating microelement, properties and sources in food. Molecules, 1298. [Google Scholar] [CrossRef]
- Rayman, M. P. Food-chain selenium and human health: emphasis on intake. Br J Nutr. 2008, 100(2), 254–268. [Google Scholar] [CrossRef]
- Flohé, L. Selenium in mammalian spermiogenesis. Biol Chem. 2007, 388, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; He, S.; Peng, J.; Guo, X.; Tan, W. Expression profile analysis of selenium-related genes in peripheral blood mononuclear cells of patients with keshan disease. Biomed Res Int 2019. [Google Scholar] [CrossRef] [PubMed]
- Sunde, R. A.; Raines, A. M. Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. Adv Nutr. [CrossRef]
- Papp, L. V.; Lu, J.; Holmgren, A.; Khanna, K. K. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal. 2007, 9(7), 775–806. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lu, Z.; He, M.; Shi, B.; Lei, X.; Shan, A. The effects of endoplasmic-reticulum-resident selenoproteins in a nonalcoholic fatty liver disease pig model induced by a high-fat diet. Nutrients 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Rose, A. H.; Hoffmann, P. R. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2012, 16(7), 705–743. [Google Scholar] [CrossRef]
- Zijiang Yang; Ci Liu; Chunpeng Liu. Selenium deficiency mainly influences antioxidant selenoproteins expression in broiler immune organs. Biol Trace Elem Res 2015, 172, 209–221. [Google Scholar] [CrossRef]
- Hariharan, S.; Dharmaraj, S. Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology. 2020, 28(3), 667–695. [Google Scholar] [CrossRef]
- Rees, K.; Hartley, L.; Day, C.; Flowers, N.; Clarke, A.; Stranges, S. Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Database of Syst Rev, C: (1), 0096. [Google Scholar] [CrossRef]
- Benstoem, C.; Goetzenich, A.; Kraemer, S.; Borosch, S.; Manzanares, W.; Hardy, G.; Stoppe, C. Selenium and its supplementation in cardiovascular disease—what do we know? Nutrients. 2015, 7(5), 3094–3118. [Google Scholar] [CrossRef] [PubMed]
- Shalihat, A.; Hasanah, A. N.; Mutakin; Lesmana, R. ; Budiman, A.; Gozali, D. the role of selenium in cell survival and its correlation with protective effects against cardiovascular disease: a literature review. Biomed Pharmacother. 2021, 134. [Google Scholar] [CrossRef] [PubMed]
- Chi, Q.; Zhang, Q.; Lu, Y.; Zhang, Y.; Xu, S.; Li, S. Roles of selenoprotein s in reactive oxygen species-dependent neutrophil extracellular trap formation induced by selenium-deficient arteritis. Redox Biol, 1020. [Google Scholar] [CrossRef]
- Carmine Rocca; Loubna Boukhzar; Maria Concetta Granieri. A selenoprotein t-derived peptide protects the heart against ischemia/reperfusion injury through inhibition of apoptosis and oxidative stress. Acta Physiol 2018, 223. [Google Scholar] [CrossRef]
- Canter, J. A.; Ernst, S. E.; Peters, K. M.; Carlson, B. A.; Thielman, N. R. J.; Grysczyk, L.; Udofe, P.; Yu, Y.; Cao, L.; Davis, C. D.; Gladyshev, V. N.; Hatfield, D. L.; Tsuji, P. A. Selenium and the 15kda selenoprotein impact colorectal tumorigenesis by modulating intestinal barrier integrity. J. Mol. Sci 2021, 22. [Google Scholar] [CrossRef]
- Shchedrina, V. A.; Zhang, Y.; Labunskyy, V. M.; Hatfield, D. L.; Gladyshev, V. N. Structure-function relations, physiological roles, and evolution of mammalian er-resident selenoproteins. Antioxid Redox Signal, 2010, 12, 839–49. [Google Scholar] [CrossRef]
- Elena Gennadyevna Varlamova. Participation of selenoproteins localized in the er in the processes occurring in this organelle and in the regulation of carcinogenesis-associated processes. J Trace Elem Med Biol. 2018, 48, 172–180. [Google Scholar] [CrossRef]
- Addinsall, A. B.; Wright, C. R.; Andrikopoulos, S.; van der Poel, C.; Stupka, N. Emerging roles of endoplasmic reticulum-resident selenoproteins in the regulation of cellular stress responses and the implications for metabolic disease. Biochem J. 2018, 475, 1037–1057. [Google Scholar] [CrossRef]
- Pitts, M. W.; Hoffmann, P. R. Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium. 2018, 70, 76–86. [Google Scholar] [CrossRef]
- Tsuji, P. A.; Carlson, B. A.; Naranjo-Suarez, S.; Yoo, M. H.; Xu, X. M.; Fomenko, D. E.; Gladyshev, V. N.; Hatfield, D. L.; Davis, C. D. Knockout of the 15 kda selenoprotein protects against chemically-induced aberrant crypt formation in mice. PLoS One 2012, 7. [Google Scholar] [CrossRef]
- Schweizer U; Dehina N; Schomburg L. Disorders of selenium metabolism and selenoprotein function. Curr Opin Pediatr 2011, 23, 429–435. [Google Scholar] [CrossRef]
- Lu, C.; Qiu, F.; Zhou, H.; Peng, Y.; Hao, W.; Xu, J.; Yuan, J.; Wang, S.; Qiang, B.; Xu, C.; Peng, X. Identification and characterization of selenoprotein k: an antioxidant in cardiomyocytes. FEBS Lett 2006, 580, 5189–5197. [Google Scholar] [CrossRef] [PubMed]
- G E Arteel; V Mostert; H Oubrahim; K Briviba; J Abel; H Sies. Protection by selenoprotein p in human plasma against peroxynitrite-mediated oxidation and nitration. Biol Chem. 1998, 379, (8–9). [Google Scholar]
- Li, G.; Wang, F.; Kang, D.; Li, C. Keshan disease: an endemic cardiomyopathy in china. Hum Pathol 1985, 16, 602–609. [Google Scholar] [CrossRef]
- Xu, G. L.; Wang, S. C. further investigation on the role of selenium deficiency in the aetiology and pathogenesis of Keshan disease. Biomed Environ Sci 1997, 10, (2–3). [Google Scholar]
- Keshan disease research group. epidemiologic studies on the etiologic relationship of selenium and Keshan disease. Chin Med J (Engl). 1979, 92, 477–482. [Google Scholar]
- Li Y; Yang Y; Chen H. [Detection of enteroviral rna in paraffin-embedded myocardial tissue from patients with Keshan by nested PCR]. Zhonghua Yi Xue Za Zhi, 1995, 75, 344–382.
- Peng, T.; Li, Y.; Yang, Y.; Niu, C.; Morgan-Capner, P.; Archard, L. C.; Zhang, H. Characterization of Enterovirus isolates from patients with heart muscle disease in a selenium-deficient area of china; J Clin Microbiol. 2000; 38 (10), 3538-43. [CrossRef]
- Beck, M. A.; Matthews, C. C. Micronutrients and host resistance to viral infection. Proc Nutr Soc. [CrossRef]
- M A Rossi; R B Bestetti. The challenge of chagasic cardiomyopathy. the pathologic roles of autonomic abnormalities, autoimmune mechanisms and microvascular changes, and therapeutic implications. Cardiology 1995, 86, 1–7. [Google Scholar] [CrossRef]
- Maria Teresa Rivera; Andrea Pereira de Souza. Progressive Chagas’ cardiomyopathy is associated with low selenium levels. Am J Trop Med Hyg 2002, 66, 706–712. [Google Scholar] [CrossRef]
- Kardinaal, A. F. M.; Kok, F. J.; Kohlmeier, L.; Martin-Moreno, J. M.; Ringstad, J.; G6mez-Aracena, J.; Mazaev, V. P.; Thamm, M.; Martin, B. C.; Aro, A.; Kark, J. D.; Delgado-Rodriguez, M.; Riemersma, R. A.; Van ’t Veer, P.; Huttunen, J. K. Association between toenail selenium and risk of acute myocardial infarction in european men the euramic study; Am J Epidemiol, 1997; 145(4), 373-9. 145(4). [CrossRef]
- Schomburg, L.; Orho-Melander, M.; Struck, J.; Bergmann, A.; Melander, O. Seleno protein-P deficiency predicts cardiovascular disease and death. Nutrients 2019, 11. [Google Scholar] [CrossRef]
- Saito, Y.; Sato, N.; Hirashima, M.; Takebe, G.; Nagasawa, S.; Takahashi, K. Domain structure of bi-functional selenoprotein P; 2004; 381. (Pt3), 841-6. [CrossRef]
- Saito, Y.; Hayashi, T.; Tanaka, A.; Watanabe, Y.; Suzuki, M.; Saito, E.; Takahashi, K. Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase: isolation and enzymatic characterization of human selenoprotein P. J Biol Chem. 1999, 274, 2866–2871. [Google Scholar] [CrossRef]
- Traulsen H; Steinbrenner H; Buchczyk DP; Klotz LO; Sies H. Selenoprotein P protects low-density lipoprotein against oxidation. Free Radic Res 2004, 38, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Hondal, R. J.; Ma, S.; Caprioli, R. M.; Hill, K. E.; Burk, R. F. Heparin-binding histidine and lysine residues of rat selenoprotein P. J Biol Chem 2001, 276, 15823–15831. [Google Scholar] [CrossRef] [PubMed]
- C Sasakura; K T Suzuki. Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P. J Inorg Biochem. 1998, 71, (3–4). [Google Scholar] [CrossRef]
- Hu, X. F.; Eccles, K. M.; Chan, H. M. High selenium exposure lowers the odds ratios for hypertension, stroke, and myocardial infarction associated with mercury exposure among inuit in Canada. Environ Int 2017, 102, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Misu, H.; Takayama, H.; Saito, Y.; Mita, Y.; Kikuchi, A.; Ishii, K. A.; Chikamoto, K.; Kanamori, T.; Tajima, N.; Lan, F.; Takeshita, Y.; Honda, M.; Tanaka, M.; Kato, S.; Matsuyama, N.; Yoshioka, Y.; Iwayama, K.; Tokuyama, K.; Akazawa, N.; Maeda, S.; Takekoshi, K.; Matsugo, S.; Noguchi, N.; Kaneko, S.; Takamura, T. Deficiency of the hepatokine selenoprotein p increases responsiveness to exercise in mice through upregulation of reactive oxygen species and AMP-activated protein kinase in muscle. Nat Med. [CrossRef]
- Caviglia, G. P.; Rosso, C.; Armandi, A.; Gaggini, M.; Carli, F.; Abate, M. L.; Olivero, A.; Ribaldone, D. G.; Saracco, G. M.; Gastaldelli, A.; Bugianesi, E. interplay between oxidative stress and metabolic derangements in non-alcoholic fatty liver disease: the role of selenoprotein P. Int J Mol Sci 2020, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Day, K.; Seale, L. A.; Graham, R. M.; Cardoso, B. R. Selenotranscriptome network in non-alcoholic fatty liver disease. Front Nutr 2021, 8, 744825. [Google Scholar] [CrossRef]
- Wang, P.; Lu, Z.; He, M.; Shi, B.; Lei, X.; Shan, A. The effects of endoplasmic-reticulum-resident selenoproteins in a nonalcoholic fatty liver disease pig model induced by a high-fat diet. Nutrients 2020, 12. [Google Scholar] [CrossRef]
- Zhu, R.; Baker, S. S.; Moylan, C. A.; Abdelmalek, M. F.; Guy, C. D.; Zamboni, F.; Wu, D.; Lin, W.; Liu, W.; Baker, R. D.; Govindarajan, S.; Cao, Z.; Farci, P.; Diehl, A. M.; Zhu, L. Systematic transcriptome analysis reveals elevated expression of alcohol-metabolizing genes in NAFLD livers. J Pathol 2016, 238, 531–542. [Google Scholar] [CrossRef]
- Carlson, B. A.; Novoselov, S. V.; Kumaraswamy, E.; Lee, B. J.; Anver, M. R.; Gladyshev, V. N.; Hatfield, D. L. Specific excision of the selenocysteine TRNA[Ser]Sec (T-Rsp) gene in mouse liver demonstrates an essential role of selenoproteins in liver function. J Biol Chem 2004, 279, 8011–8017. [Google Scholar] [CrossRef]
- Sengupta, A.; Carlson, B. A.; Hoffmann, V. J.; Gladyshev, V. N.; Hatfield, D. L. Loss of housekeeping selenoprotein expression in mouse liver modulates lipoprotein metabolism. Biochem Biophys Res Commun 2008, 365, 446–452. [Google Scholar] [CrossRef]
- Stergios, A. Polyzos; Jannis Kountouras; Antonis Goulas; Leonidas H Duntas. Selenium and selenoprotein P in nonalcoholic fatty liver disease. Hormones (Athens) 2019, 19, 61–72. [Google Scholar] [CrossRef]
- Speckmann, B.; Schulz, S.; Hiller, F.; Hesse, D.; Schumacher, F.; Kleuser, B.; Geisel, J.; Obeid, R.; Grune, T.; Kipp, A. P. Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice. J Nutr Biochem 2017, 48, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Claudia Lennicke; Jette Rahn; Barbara Seliger. Individual effects of different selenocompounds on the hepatic proteome and energy metabolism of mice. Biochim Biophys Acta Gen Subj. 2017, 1861, 3323–3334. [Google Scholar] [CrossRef]
- Tang, C.; Li, S.; Zhang, K.; Li, J.; Han, Y.; Zhan, T.; Zhao, Q.; Guo, X.; Zhang, J. Selenium deficiency-induced redox imbalance leads to metabolic reprogramming and inflammation in the liver. Redox Biol 2020, 36, 101519. [Google Scholar] [CrossRef]
- Wu, B. K.; Chen, Q. H.; Pan, D.; Chang, B.; Sang, L. X. A novel therapeutic strategy for hepatocellular carcinoma: immunomodulatory mechanisms of selenium and/or selenoproteins on a shift towards anti-cancer. Int Immunopharmacol, 1077; 96. [Google Scholar] [CrossRef]
- Badman, M. K.; Flier, J. S. The Adipocyte as an active participant in energy balance and metabolism. Gastroenterology 2007, 132, 2103–2115. [Google Scholar] [CrossRef] [PubMed]
- P Björntorp. “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 1990, 10, 493–496. [Google Scholar] [CrossRef]
- Anstee, Q. M.; Targher, G.; Day, C. P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013, 10(6), 330–344. [Google Scholar] [CrossRef]
- Bhatia, L. S.; Curzen, N. P.; Calder, P. C.; Byrne, C. D. Non-alcoholic fatty liver disease: a new and important cardiovascular risk factor? Eur Heart J. 2012, 33(10), 1190–1200. [Google Scholar] [CrossRef]
- Carl J Lavie; Richard V Milani; Anil Verma; James H O’Keefe. C-reactive protein and cardiovascular diseases--is it ready for primetime? Am J Med Sci. 2009, 338, 486–492. [Google Scholar] [CrossRef]
- Norbert Stefan; Hans-Ulrich Häring. The role of hepatokines in metabolism. Nat Rev Endocrinol. 2013, 9, 144–152. [Google Scholar] [CrossRef]
- Misu, H.; Takamura, T.; Takayama, H.; Hayashi, H.; Matsuzawa-Nagata, N.; Kurita, S.; Ishikura, K.; Ando, H.; Takeshita, Y.; Ota, T.; Sakurai, M.; Yamashita, T.; Mizukoshi, E.; Yamashita, T.; Honda, M.; Miyamoto, K. I.; Kubota, T.; Kubota, N.; Kadowaki, T.; Kim, H. J.; Lee, I. K.; Minokoshi, Y.; Saito, Y.; Takahashi, K.; Yamada, Y.; Takakura, N.; Kaneko, S. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab 2010, 12, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Choi, H. Y.; Hwang, S. Y.; Lee, C. H.; Hong, H. C.; Yang, S. J.; Yoo, H. J.; Seo, J. A.; Kim, S. G.; Kim, N. H.; Baik, S. H.; Choi, D. S.; Choi, K. M. Increased selenoprotein P levels in subjects with visceral obesity and nonalcoholic fatty liver disease. Diabetes Metab J 2013, 37, 63–71. [Google Scholar] [CrossRef]
- Yang, S. J.; Hwang, S. Y.; Choi, H. Y.; Yoo, H. J.; Seo, J. A.; Kim, S. G.; Kim, N. H.; Baik, S. H.; Choi, D. S.; Choi, K. M. Serum selenoprotein P levels in patients with type 2 diabetes and prediabetes: implications for insulin resistance, inflammation, and atherosclerosis. J Clin Endocrinol Metab 2011, 96. [Google Scholar] [CrossRef]
- Yoo, H. J.; Choi, K. M. Hepatokines as a link between obesity and cardiovascular diseases. Diabetes Metab J. [CrossRef]
- Jung, T. W.; Choi, H. Y.; Lee, S. Y.; Hong, H. C.; Yang, S. J.; Yoo, H. J.; Youn, B. S.; Baik, S. H.; Choi, K. M. Salsalate and adiponectin improve palmitate-induced insulin resistance via inhibition of selenoprotein P through the AMPK-FOXO1α pathway. PLoS One 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C. W.; Short, S. P.; Williams, C. S. Selenoproteins and oxidative stress-induced inflammatory tumorigenesis in the gut. Cell Mol Life Sci. [CrossRef]
- Gilaad G Kaplan. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol. 2015, 12, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Short, S. P.; Pilat, J. M.; Williams, C. S. Roles for selenium and selenoprotein P in the development, progression, and prevention of intestinal disease. Free Radic Biol Med. [CrossRef]
- Nettleford, S. K.; Zhao, L.; Qian, F.; Herold, M.; Arner, B.; Desai, D.; Amin, S.; Xiong, N.; Singh, V.; Carlson, B. A.; Prabhu, K. S. The essential role of selenoproteins in the resolution of citrobacter rodentium-induced intestinal inflammation. Front Nutr 2020, 7, 96. [Google Scholar] [CrossRef]
- Zhuang, Y.; Wu, H.; Wang, X.; He, J.; He, S.; Yin, Y. Resveratrol attenuates oxidative stress-induced intestinal barrier injury through PI3K/Akt-mediated Nrf2 signaling pathway. Oxid Med Cell Longev 2019, 7591840. [Google Scholar] [CrossRef] [PubMed]
- Short, S. P.; Pilat, J. M.; Barrett, C. W.; Reddy, V. K.; Haberman, Y.; Hendren, J. R.; Marsh, B. J.; Keating, C. E.; Motley, A. K.; Hill, K. E.; Zemper, A. E.; Washington, M. K.; Shi, C.; Chen, X.; Wilson, K. T.; Hyams, J. S.; Denson, L. A.; Burk, R. F.; Rosen, M. J.; Williams, C. S. Colonic epithelial-derived selenoprotein P is the source for antioxidant-mediated protection in colitis-associated cancer. Gastroenterology 2021, 160, 1694–1708e3. [Google Scholar] [CrossRef]
- Huang, L. jie; Mao, X. tao; Li, Y. yuan; Liu, D. dan; Fan, K. qi; Liu, R. bei; Wu, T. ting; Wang, H. li; Zhang, Y.; Yang, B.; Ye, C. qi; Zhong, J. yan; Chai, R. jie; Cao, Q.; Jin, J. Multiomics analyses reveal a critical role of selenium in controlling T cell differentiation in Crohn’s disease. Immunity 2021, 54, 1728–1744e7. [Google Scholar] [CrossRef]
- J Seiderer; J Dambacher; B Kühnlein. The role of the selenoprotein S (SELS) gene -105G>A promoter polymorphism in inflammatory bowel disease and regulation of SELS gene expression in intestinal inflammation. Tissue Antigens. 2007, 70, 238–246. [Google Scholar] [CrossRef]
- Hoffmann, P.R. An emerging picture of the biological roles of selenoprotein K. In Selenium: Its Molecular Biology and Role in Human Health; Dolph L. Hatfield, Marla J Berry, Vadim N. Gladyshev, Eds.; Springer, 2012; 335–344.
- Jun Liu; Sharon Rozovsky. Membrane-bound selenoproteins. Antioxid Redox Signal 2015, 23, 795–813. [Google Scholar] [CrossRef] [PubMed]
- Han, Y. M.; Koh, J.; Kim, J. W.; Lee, C.; Koh, S. J.; Kim, B. G.; Lee, K. L.; Im, J. P.; Kim, J. S. NF-Kappa B activation correlates with disease phenotype in Crohn’s disease. PLoS One 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Wang, Z.; Zhang, J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev. 2017, 4535194. [Google Scholar] [CrossRef]
- Nettleford, S. K.; Prabhu, K. S. Selenium and selenoproteins in gut inflammation—a review. Antioxidants. 2018, 7(3), 36. [Google Scholar] [CrossRef] [PubMed]
- Auboeuf, D.; Rieusset, J.; Fajas, L.; Vallier, P.; Frering, V.; Riou, J. P.; Staels, B.; Auwerx, J.; Laville, M.; Vidal, H. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans no alteration in adipose tissue of obese and NIDDM patients. Diabetes, 1319. [Google Scholar] [CrossRef]
- Dubuquoy, L.; Å Jansson, E.; Deeb, S.; Rakotobe, S.; Karoui, M.; Colombel, J. F.; Auwerx, J.; Pettersson, S.; Desreumaux, P. Impaired expression of peroxisome proliferator-activated receptor γ in ulcerative colitis. Gastroenterology 2003, 124, 1265–1276. [Google Scholar] [CrossRef] [PubMed]
- Dubuquoy, L.; Rousseaux, C.; Thuru, X.; Peyrin-Biroulet, L.; Romano, O.; Chavatte, P.; Chamaillard, M.; Desreumaux, P. PPARγ as a new therapeutic target in inflammatory bowel diseases. Gut. 2006, 55(9), 1341–1349. [Google Scholar] [CrossRef]
- Peters, U.; Takata, Y. Selenium and the prevention of prostate and colorectal cancer. Mol Nutr Food Res. 2008, 52(11), 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, D. L.; Yoo, M. H.; Carlson, B. A.; Gladyshev, V. N. Selenoproteins that function in cancer prevention and promotion. Biochim Biophys Acta, 2009, 1790, 1541–1545. [Google Scholar] [CrossRef] [PubMed]
- Matthew I Jackson; G. Combs. Selenium and anticarcinogenesis: underlying mechanisms. Curr Opin Clin Nutr Metab Care. 2008, 11, 18–26. [Google Scholar] [CrossRef]
- Regina Brigelius-Flohé. Selenium compounds and selenoproteins in cancer. Chem Biodivers. 2008, 5, 389–395. [Google Scholar] [CrossRef]
- Jeffrey Squires; Marla J Berry. Selenium, selenoproteins, and cancer. Hawaii Med J. 2006, 65, 239–240. [Google Scholar]
- Al-Taie, O. H.; Uceyler, N.; Eußner, U.; Jakob, F.; Mörk, H.; Scheurlen, M.; Brigelius-Flohe, R.; Schöttker, K.; Abel, J.; Thalheimer, A.; Katzenberger, T.; Illert, B.; Melcher, R.; Köhrle, J. Expression profiling and genetic alterations of the selenoproteins GI-GPx and SePP in colorectal carcinogenesis. Nutr Cancer 2004, 48, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Bermano, G.; Pagmantidis, V.; Holloway, N.; Kadri, S.; Mowat, N. A. G.; Shiel, R. S.; Arthur, J. R.; Mathers, J. C.; Daly, A. K.; Broom, J.; Hesketh, J. E. Evidence that a polymorphism within the 3’UTR of glutathione peroxidase 4 is functional and is associated with susceptibility to colorectal cancer. Genes Nutr 2007, 2, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Jablonska, E.; Gromadzinska, J.; Sobala, W.; Reszka, E.; Wasowicz, W. Lung cancer risk associated with selenium status is modified in smoking individuals by Sep15 polymorphism. Eur J Nutr 2008, 47, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Arisawa, T.; Tahara, T.; Ohkubo, M.; Yoshioka, D.; Maruyama, N.; Fujita, H.; Kamiya, Y.; Nakamura, M.; Nagasaka, M.; Iwata, M.; Takahama, K.; Watanabe, M.; Hirata, I. Selenoprotein S (SEPS1) gene -105G>a promoter polymorphism influences the susceptibility to gastric cancer in the japanese population. BMC Gastroenterol 2009, 9. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M. L.; Adami, H. O.; Grönberg, H.; Wiklund, F.; Green, F. R.; Rayman, M. P. Interaction between single nucleotide polymorphisms in selenoprotein P and mitochondrial superoxide dismutase determines prostate cancer risk. Cancer Res 2008, 68, 10171–10177. [Google Scholar] [CrossRef]
- Diwadkar-Navsariwala, V.; Diamond, A. M. The link between selenium and chemoprevention: a case for selenoproteins. J Nutr 2004, 134, 2899–2902. [Google Scholar] [CrossRef]
- Reszka, E. Selenoproteins in bladder cancer. Clinica Chimica Acta 2012, 413, (9–10). [Google Scholar] [CrossRef]
- Keum, N. N.; Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019, 16(12), 713–732. [Google Scholar] [CrossRef]
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol 2021, 14. [Google Scholar] [CrossRef]
- Wei, R.; Qiu, H.; Xu, J.; Mo, J.; Liu, Y.; Gui, Y.; Huang, G.; Zhang, S.; Yao, H.; Huang, X.; Gan, Z. Expression and prognostic potential of GPX1 in human cancers based on data mining. Ann Transl Med 2020, 8, 124–124. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Worley, B. L.; Phaëton, R.; Hempel, N. Extracellular glutathione peroxidase GPx3 and its role in cancer. Cancers. 2020, 12(8), 2197. [Google Scholar] [CrossRef] [PubMed]
- Fontelles, C. C.; Ong, T. P. Selenium and breast cancer risk: focus on cellular and molecular mechanisms. Adv Cancer Res 2017, 136, 173–192. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. M. Selenoproteins of the human prostate: unusual properties and role in cancer etiology. Biol Trace Elem Res 2019, 192, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Huang, L. jie; Mao, X. tao; Li, Y. yuan; Liu, D. dan; Fan, K. qi; Liu, R. bei; Wu, T. ting; Wang, H. li; Zhang, Y.; Yang, B.; Ye, C. qi; Zhong, J. yan; Chai, R. jie; Cao, Q.; Jin, J. Multiomics analyses reveal a critical role of selenium in controlling T Cell Differentiation in Crohn’s disease. Immunity 2021, 54, 1728–1744e7. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cheng, W.; Nie, T.; Lai, H.; Hu, X.; Luo, J.; Li, F.; Li, H. Selenoprotein K mediates the proliferation, migration, and invasion of human choriocarcinoma cells by negatively regulating human chorionic gonadotropin expression via ERK, P38 MAPK, and Akt signaling pathway. Biol Trace Elem Res 2018, 184, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Marciel, M. P.; Hoffmann, P. R. Molecular mechanisms by which selenoprotein K regulates immunity and cancer. Biol Trace Elem Res 2019, 192, 60–68. [Google Scholar] [CrossRef]
- S. B. Ben; B. Peng; G. C. Wang; et al. Overexpression of selenoprotein SelK in BGC-823 cells inhibits cell adhesion and migration. Biochemistry (Moscow) 2015, 80, 1344–1353. [Google Scholar] [CrossRef]
- L C Clark; G F Combs Jr; B W Turnbull; E H Slate; D K Chalker; J Chow; et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. a randomized controlled trial. nutritional prevention of cancer study group. JAMA 1996, 276, 1957–1963. [Google Scholar] [CrossRef]
- A J Duffield-Lillico; B L Dalkin; M E Reid; B W Turnbull; E H Slate; E T Jacobs; J R Marshall; L C Clark. Selenium supplementation, baseline plasma selenium status and incidence of prostate cancer: an analysis of the complete treatment period of the nutritional prevention of cancer trial. BJU Int. 2003, 91, 608–612. [Google Scholar] [CrossRef]
- Lippman, S. M.; Klein, E. A.; Goodman, P. J.; Lucia, M. S.; Thompson, I. M.; Ford, L. G.; Parnes, H. L.; Minasian, L. M.; Gaziano, J. M.; Hartline, J. A.; Parsons, J. K.; Bearden, J. D.; Crawford, E. D.; Goodman, G. E.; Claudio, J.; Winquist, E.; Cook, E. D.; Karp, D. D.; Walther, P.; Lieber, M. M.; Kristal, A. R.; Darke, A. K.; Arnold, K. B.; Ganz, P. A.; Santella, R. M.; Albanes, D.; Taylor, P. R.; Probstfield, J. L.; Jagpal, T. J.; Crowley, J. J.; Meyskens, F. L.; Baker, L. H.; Coltman, C. A. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the selenium and vitamin E cancer prevention trial (SELECT). JAMA 2009, 301, 39–51. [Google Scholar] [CrossRef]
- Cardoso, B. R.; Roberts, B. R.; Bush, A. I.; Hare, D. J. Selenium, selenoproteins and neurodegenerative diseases. Metallomics. 2015, 7(8), 1213–1228. [Google Scholar] [CrossRef]
- Pitts, M. W.; Hoffmann, P. R.; Schomburg, L. Editorial: selenium and selenoproteins in brain development, function, and disease. Front Neurosci. 2022, 15, 821140. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Sies, H. Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch Biochem Biophys 2013, 536, 152–157. [Google Scholar] [CrossRef]
- Pillai, R.; Uyehara-Lock, J. H.; Bellinger, F. P. Selenium and selenoprotein function in brain disorders. IUBMB Life. 2014, 66(4), 229–239. [Google Scholar] [CrossRef]
- Jun Chen; Marla J Berry. Selenium and selenoproteins in the brain and brain diseases. J Neurochem 2003, 86, 1–12. [Google Scholar] [CrossRef]
- Reddy, P. H.; Beal, M. F. Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res Rev 2005, 49, 618–632. [Google Scholar] [CrossRef]
- Strozyk, D.; Launer, L. J.; Adlard, P. A.; Cherny, R. A.; Tsatsanis, A.; Volitakis, I.; Blennow, K.; Petrovitch, H.; White, L. R.; Bush, A. I. Zinc and copper modulate Alzheimer Aβ levels in human cerebrospinal fluid. Neurobiol Aging 2009, 30, 1069–1077. [Google Scholar] [CrossRef]
- Bellinger, F. P.; Raman, A. V.; Reeves, M. A.; Berry, M. J. Regulation and function of selenoproteins in human disease. Biochem J. 2009, 422(1), 11–22. [Google Scholar] [CrossRef]
- Kowalska, A.; Pruchnik-Wolińska, D.; Florczak, J.; Modestowicz, R.; Szczech, J.; Kozubski, W.; Rossa, G.; Wender, M. Genetic study of familial cases of Alzheimer’s disease. Acta Biochim Pol 2004, 51, 245–252. [Google Scholar] [CrossRef]
- Dae Y Hwang; Jung S Cho; Jae H Oh; Yong K Kim; et al. Differentially expressed genes in transgenic mice carrying human mutant presenilin-2 (N141I): correlation of selenoprotein M with Alzheimer’s disease. Neurochem Res 2005, 30, 1009–1019. [Google Scholar] [CrossRef]
- Yim, S. Y.; Chae, K. R.; Shim, S. B.; Hong, J. T.; Park, J. Y.; Lee, C. Y.; Son, H. J.; Sheen, Y. Y.; Hwang, D. Y. ERK Activation induced by selenium treatment significantly downregulates β/γ-secretase activity and Tau phosphorylation in the transgenic rat overexpressing human selenoprotein M. Int J Mol Med 2009, 24, 91–96. [Google Scholar] [CrossRef]
- Kim, Y.; Goo, J. S.; Kim, I. Y.; Kim, J. E.; Kwak, M. H.; Go, J.; Shim, S.; Hong, J. T.; Hwang, D. Y.; Seong, J. K. Identification of the responsible proteins for increased selenium bioavailability in the brain of transgenic rats overexpressing selenoprotein M. Int J Mol Med 2014, 34, 1688–1698. [Google Scholar] [CrossRef]
- Takeshi Iwatsubo. The Gamma-secretase complex: machinery for intramembrane proteolysis. Curr Opin Neurobiol. 2004, 14, 379–383. [Google Scholar] [CrossRef]
- Fusheng Chen; Hiroshi Hasegawa; Gerold Schmitt-Ulms; Paul Fraser; et al. TMP21 is a presenilin complex component that modulates gamma-secretase but not epsilon-secretase activity. Nature 2006, 440, 1208–1212. [Google Scholar] [CrossRef]
- M Scharpf; Ulrich Schweizer; Thomas Arzberger; Josef Köhrle; W Roggendorf; Lutz Schomburg. Neuronal and ependymal expression of selenoprotein P in the human brain. J Neural Transm 2007, 114, 877–884. [Google Scholar] [CrossRef]
- Lu, T.; Pan, Y.; Kao, S. Y.; Li, C.; Kohane, I.; Chan, J.; Yankner, B. A. Gene regulation and DNA damage in the ageing human brain. Nature 2004, 429, 883–891. [Google Scholar] [CrossRef]
- Hill, K. E.; Zhou, J.; McMahan, W. J.; Motley, A. K.; Atkins, J. F.; Gesteland, R. F.; Burk, R. F. Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem 2003, 278, 13640–13646. [Google Scholar] [CrossRef]
- Peters, M. M.; Hill, K. E.; Burk, R. F.; Weeber, E. J. Altered hippocampus synaptic function in selenoprotein P deficient mice. Mol Neurodegener 2006, 1, 12. [Google Scholar] [CrossRef]
- Bellinger, F. P.; He, Q.-P.; Bellinger, M. T.; Lin, Y.; Raman, A. V; White, L. R.; Berry, M. J. Association of Selenoprotein P with Alzheimer’s Pathology in Human Cortex. J Alzheimers Dis., 2008, 15(3), 465-72. [CrossRef]
- Raymond F Burk; Kristina E Hill. Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 2005, 25, 215–235. [Google Scholar] [CrossRef]
- Lovell, M. A.; Xiong, S.; Lyubartseva, G.; Markesbery, W. R. Organoselenium (Sel-Plex diet) decreases amyloid burden and RNA and DNA oxidative damage in APP/PS1 mice. Free Radic Biol Med 2009, 46, 1527–1533. [Google Scholar] [CrossRef]
- Du, X.; Li, H.; Wang, Z.; Qiu, S.; Liu, Q.; Ni, J. Selenoprotein P and selenoprotein M block Zn2+-mediated Aβ42 aggregation and toxicity. Metallomics 2013, 5, 861–870. [Google Scholar] [CrossRef]
- Xiubo Du; Zhi Wang; Youbiao Zheng; Haiping Li; Jiazuan Ni; Qiong Liu. Inhibitory act of selenoprotein P on Cu+/Cu2+-induced Tau aggregation and neurotoxicity. Inorg Chem 2014, 53, 11221–30. [Google Scholar] [CrossRef]
- Du, X.; Wang, Z.; Tian, J.; Qiu, S.; Wang, R.; Wang, C.; Liu, Q. Direct interaction between selenoprotein P and tubulin. Int J Mol Sci 2014, 15, 10199–10214. [Google Scholar] [CrossRef]
- Stanley Fahn. Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci 2003, 991, 1–14. [Google Scholar] [CrossRef]
- Chinta, S. J.; Andersen, J. K. Dopaminergic neurons. Int J Biochem Cell Biol 2005, 37, 942–946. [Google Scholar] [CrossRef]
- J E Galvin; V M Lee; M L Schmidt; P H Tu; T Iwatsubo; J Q Trojanowski. Pathobiology of the Lewy Body. Adv Neurol. 1999, 80, 313–324. [Google Scholar]
- Chen, J.; Berry, M. J. Selenium and selenoproteins in the brain and brain diseases. J Neurochem. 2003, 86(1), 1–12. [Google Scholar] [CrossRef]
- Shahar, A.; Patel, K. V.; Semba, R. D.; Bandinelli, S.; Shahar, D. R.; Ferrucci, L.; Guralnik, J. M. plasma selenium is positively related to performance in neurological tasks assessing coordination and motor speed. Mov Disord. 2010, 25, 1909–1915. [Google Scholar] [CrossRef]
- Bellinger, F. P.; Bellinger, M. T.; Seale, L. A.; Takemoto, A. S.; Raman, A. V.; Miki, T.; Manning-Boǧ, A. B.; Berry, M. J.; White, L. R.; Ross, G. W. Glutathione peroxidase 4 is associated with neuromelanin in substantia nigra and dystrophic axons in putamen of parkinson’s brain. Mol Neurodegener 2011, 6. [Google Scholar] [CrossRef]
- Perry, T. L.; Yong, V. W. Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 1986, 67, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Perry, T. L.; Godin, D. V.; Hansen, S. Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 1982, 33, 305–310. [Google Scholar] [CrossRef]
- Boukhzar, L.; Hamieh, A.; Cartier, D.; Tanguy, Y.; Alsharif, I.; Castex, M.; Arabo, A.; Hajji, S. El; Bonnet, J. J.; Errami, M.; Falluel-Morel, A.; Chagraoui, A.; Lihrmann, I.; Anouar, Y. Selenoprotein T exerts an essential oxidoreductase activity that protects dopaminergic neurons in mouse models of Parkinson’s disease. Antioxid Redox Signal 2016, 24, 557–574. [Google Scholar] [CrossRef]
- Arodin, L.; Miranda-Vizuete, A.; Swoboda, P.; Fernandes, A. P. Protective effects of the thioredoxin and glutaredoxin systems in dopamine-induced cell death. Free Radic Biol Med 2014, 73, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Lopert, P.; Day, B. J.; Patel, M. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. PLoS One 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S. M.; Lee, R. T. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal. 2013, 18(10), 1165–1207. [Google Scholar] [CrossRef]
- Bernard S Chang; Daniel H Lowenstein. Epilepsy. N Engl J Med. 2003, 349, 1257–1266. [Google Scholar] [CrossRef]
- Elger, C. E.; Schmidt, D. Modern management of epilepsy: a practical approach. Epilepsy & Behavior 2008, 12, 501–539. [Google Scholar] [CrossRef]
- Ashrafi, M. R.; Shams, S.; Nouri, M.; Mohseni, M.; Shabanian, R.; Yekaninejad, M. S.; Chegini, N.; Khodadad, A.; Safaralizadeh, R. A probable causative factor for an old problem: selenium and glutathione peroxidase appear to play important roles in epilepsy pathogenesis. Epilepsia 2007, 48, 1750–1755. [Google Scholar] [CrossRef]
- Ashrafi, M. R.; Shabanian, R.; Abbaskhanian, A.; Nasirian, A.; Ghofrani, M.; Mohammadi, M.; Zamani, G. R.; Kayhanidoost, Z.; Ebrahimi, S.; Pourpak, Z. Selenium and intractable epilepsy: is there any correlation? Pediatr Neurol 2007, 36, 25–29. [Google Scholar] [CrossRef]
- Mahyar, A.; Ayazi, P.; Fallahi, M.; Javadi, A. Correlation between serum selenium level and febrile seizures. Pediatr Neurol 2010, 43, 331–334. [Google Scholar] [CrossRef]
- Stella L Volpe; Joan I Schall; Paul R Gallagher; Virginia A Stallings; A G Christina Bergqvist. Nutrient intake of children with intractable epilepsy compared with healthy children. J Am Diet Assoc. 2007, 107, 1014–1018. [Google Scholar] [CrossRef]
- Thiel, R.; Fowkes, S. W. Down syndrome and thyroid dysfunction: should nutritional support be the first-line treatment? Med Hypotheses 2007, 69, 809–815. [Google Scholar] [CrossRef]
- Seven, M.; Basaran, S. Y.; Cengiz, M.; Unal, S.; Yuksel, A. Deficiency of selenium and zinc as a causative factor for idiopathic intractable epilepsy. Epilepsy Res 2013, 104, (1–2). [Google Scholar] [CrossRef]
- Yüzbaşioğlu, A.; Karataş, H.; Gürsoy-Özdemir, Y.; Saygi, S.; Akalan, N.; Söylemezoğlu, F.; Dalkara, T.; Kocaefe, Y. Ç.; Özgüç, M. Changes in the expression of selenoproteins in mesial temporal lobe epilepsy patients. Cell Mol Neurobiol 2009, 29, 1223–1231. [Google Scholar] [CrossRef]
- Savaskan, N. E.; Bräuer, A. U.; Kühbacher, M.; Eyüpoglu, I. Y.; Kyriakopoulos, A.; Ninnemann, O.; Behne, D.; Nitsch, R. Selenium deficiency increases susceptibility to glutamate-induced excitotoxicity. FASEB J. 2003, 17, 112–114. [Google Scholar] [CrossRef]
- Wirth, E. K.; Conrad, M.; Winterer, J.; Wozny, C.; Carlson, B. A.; Roth, S.; Schmitz, D.; Bornkamm, G. W.; Coppola, V.; Tessarollo, L.; Schombure, L.; Köhrle, J.; Hateld, D. L.; Schweizer, U. Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J. 2010, 24, 844–852. [Google Scholar] [CrossRef]
- Li, G.; Mongillo, M.; Chin, K. T.; Harding, H.; Ron, D.; Marks, A. R.; Tabas, I. Role of ERO1-α-Mediated Stimulation of Inositol 1,4,5-Triphosphate Receptor Activity in Endoplasmic Reticulum Stress-Induced Apoptosis. Journal of Cell Biology 2009, 186, 783–792. [Google Scholar] [CrossRef]
- Philip Daniel Whanger. Selenoprotein W: A Review. Cell Mol Life Sci. 2001, 57, (13–14). [Google Scholar] [CrossRef]
- Beilstein, M. A.; Vendeland, S. C.; Barofsky, E.; Jensen, O. N.; Whanger, P. D. Selenoprotein W of rat muscle binds glutathione and an unknown small molecular weight moiety. J Inorg Biochem 1996, 61, 117–124. [Google Scholar] [CrossRef]
- Vendeland, S. C.; Beilstein, M. A.; Yeh, J.-Y.; Ream, W.; Whanger, P. D. Rat skeletal muscle selenoprotein W: CDNA clone and mRNA modulation by dietary selenium (selenocysteine insertion sequence element/selenium deficiency myopathy); Proc Natl Acad Sci USA, 1995; 92(19), 8749-53. [CrossRef]
- Nigel G Laing. Congenital myopathies. Curr Opin Neurol. 2007, 20, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Jungbluth, H. Multi-minicore disease. Orphanet J Rare Dis 2007, 2, 31. [Google Scholar] [CrossRef] [PubMed]
- Zorzato, F.; Jungbluth, H.; Zhou, H.; Muntoni, F.; Treves, S. Functional effects of mutations identified in patients with multiminicore disease. IUBMB Life. 2007, 59(1), 14–20. [Google Scholar] [CrossRef]
- Baijayanta Maiti; Sandrine Arbogast; Valérie Allamand; Mark W. Moyle; Christine B. Anderson; Pascale Richard; Pascale Guicheney; Ana Ferreiro; Kevin M. Flanigan; Michael T. Howard. A mutation in the SEPN1 selenocysteine redefinition element (SRE) reduces selenocysteine incorporation and leads to SEPN1-related myopathy. Hum Mutat 2009, 30, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Zalk, R.; Lehnart, S. E.; Marks, A. R. Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem. 2007, 76, 367–385. [Google Scholar] [CrossRef] [PubMed]
- Treves, S.; Anderson, A. A.; Ducreux, S.; Divet, A.; Bleunven, C.; Grasso, C.; Paesante, S.; Zorzato, F. Ryanodine receptor 1 mutations, dysregulation of calcium homeostasis and neuromuscular disorders. Neuromuscul Disord. [CrossRef]
- Ferreiro, A.; Quijano-Roy, S.; Pichereau, C.; Moghadaszadeh, B.; Goemans, N.; Bönnemann, C.; Jungbluth, H.; Straub, V.; Villanova, M.; Leroy, J.-P.; Romero, N. B.; Martin, J.-J.; Muntoni, F.; Voit, T.; Estournet, B.; Richard, P.; Fardeau, M.; Guicheney, P. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies; Am J Hum Genet. 2002; 71(4), 739-49. 71(4),. [CrossRef]
- Herasse, M.; Parain, K.; Marty, I.; Monnier, N.; Kaindl, A. M.; Leroy, J.-P.; Richard, P.; Lunardi, J.; Romero, N. B.; Ferreiro, A. Abnormal distribution of calcium-handling proteins: a novel distinctive marker in core myopathies. J Neuropathol Exp Neurol. 2007, 66(1), 57–65. [Google Scholar] [CrossRef]
- Moghadaszadeh, B.; Petit, N.; Jaillard, C.; Brockington, M.; Roy, S. Q.; Merlini, L.; Romero, N.; Estournet, B.; Desguerre, I.; Chaigne, D.; Muntoni, F.; Topaloglu, H.; Guicheney, P. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet 2001, 29, 17–18. [Google Scholar] [CrossRef]
- Shannon L Venance; Wilma Johanna Koopman; et al. Rigid spine muscular dystrophy due to SEPN1 mutation presenting as cor pulmonale. Neurology 2005, 64, 395–396. [Google Scholar] [CrossRef]
- Yuji Okamoto; Hiroshi Takashima; et al. Molecular mechanism of rigid spine with muscular dystrophy type 1 caused by novel mutations of selenoprotein N gene. Neurogenetics 2006, 7, 175–183. [Google Scholar] [CrossRef]
- Allamand, V.; Richard, P.; Lescure, A.; Ledeuil, C.; Desjardin, D.; Petit, N.; Gartioux, C.; Ferreiro, A.; Krol, A.; Pellegrini, N.; Urtizberea, J. A.; Guicheney, P. A single homozygous point mutation in a 3′ untranslated region motif of selenoprotein N mRNA causes SEPN1-related myopathy. EMBO Rep 2006, 7, 450–454. [Google Scholar] [CrossRef]
- Ana Ferreiro; Chantal Ceuterick-de Groote; et al. Desmin-related myopathy with mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol 2004, 55, 676–686. [Google Scholar] [CrossRef] [PubMed]
- N. Clarke; W. Kidson; K. North; et al. SEPN1: Associated with congenital fiber-type disproportion and insulin resistance. Ann Neurol 2006, 59, 546–552. [Google Scholar] [CrossRef] [PubMed]
- S Bar-Nun. The role of P97/Cdc48p in endoplasmic reticulum-associated degradation: from the immune system to yeast. Curr Top Microbiol Immunol. 2005, 300, 95–125. [Google Scholar] [CrossRef]
- Ye, Y.; Shibata, Y.; Yun, C.; Ron, D.; Rapoport, T. A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol; Nature 2004, 429(6994), 841-7. [CrossRef]
- Ye, Y.; Shibata, Y.; Kikkert, M.; Van Voorden, S.; Wiertz, E.; Rapoport, T. A. Recruitment of the P97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane; Proc Natl Acad Sci USA. 2005, 102(40), 14132-8. [CrossRef]
- Lilley, B. N.; Ploegh, H. L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 2004, 429, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Lee, J. H.; Park, K. J.; Jang, J. K.; Jeon, Y. H.; Ko, K. Y.; Kwon, J. H.; Lee, S. R.; Kim, I. Y. Selenoprotein S-dependent selenoprotein K binding to P97(VCP) protein is essential for endoplasmic reticulum-associated degradation. J Biol Chem. 2015, 290, 29941–29952. [Google Scholar] [CrossRef] [PubMed]
- 178. Meyer H; Bug M; Bremer S. Emerging functions of the VCP/P97 AAA-ATPase in the ubiquitin system. Nat Cell Biol. [CrossRef]
- Gao, Y.; Pagnon, J.; Feng, H. C.; Konstantopolous, N.; Jowett, J. B. M.; Walder, K.; Collier, G. R. Secretion of the glucose-regulated selenoprotein SEPS1 from hepatoma cells. Biochem Biophys Res Commun 2007, 356, 636–641. [Google Scholar] [CrossRef]
- Gao, Y.; Hannan, N. R. F.; Wanyonyi, S.; Konstantopolous, N.; Pagnon, J.; Feng, H. C.; Jowett, J. B. M.; Kim, K. H.; Walder, K.; Collier, G. R. Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells. Cytokine 2006, 33, 246–251. [Google Scholar] [CrossRef]
- Curran, J. E.; Jowett, J. B. M.; Elliott, K. S.; Gao, Y.; Gluschenko, K.; Wang, J.; Azim, D. M. A.; Cai, G.; Mahaney, M. C.; Comuzzie, A. G.; Dyer, T. D.; Walder, K. R.; Zimmet, P.; MacCluer, J. W.; Collier, G. R.; Kissebah, A. H.; Blangero, J. Genetic variation in selenoprotein S influences inflammatory response. Nat Genet 2005, 37, 1234–1241. [Google Scholar] [CrossRef]
- Silander, K.; Alanne, M.; Kristiansson, K.; Saarela, O.; Ripatti, S.; Auro, K.; Karvanen, J.; Kulathinal, S.; Niemelä, M.; Elionen, P.; Vartiainen, E.; Jousilahti, P.; Saarela, J.; Kuulasmaa, K.; Evans, A.; Perola, M.; Salomaa, V.; Peltonen, L. Gender differences in genetic risk profiles for cardiovascular disease. PLoS One 2008, 3. [Google Scholar] [CrossRef]
- Moses, E. K.; Johnson, M. P.; Tømmerdal, L.; Forsmo, S.; Curran, J. E.; Abraham, L. J.; Charlesworth, J. C.; Brennecke, S. P.; Blangero, J.; Austgulen, R. Genetic association of preeclampsia to the inflammatory response gene SEPS1. Am J Obstet Gynecol 2008, 198, 336.e1–336e5. [Google Scholar] [CrossRef]
- Alanne, M.; Kristiansson, K.; Auro, K.; Silander, K.; Kuulasmaa, K.; Peltonen, L.; Salomaa, V.; Perola, M. Variation in the selenoprotein S gene locus is associated with coronary heart disease and ischemic stroke in two independent finnish cohorts. Hum Genet 2007, 122, (3–4). [Google Scholar] [CrossRef] [PubMed]
- Marinou, I.; Walters, K.; Dickson, M. C.; Binks, M. H.; Bax, D. E.; Wilson, A. G. Evidence of epistasis between interleukin 1 and selenoprotein-S with susceptibility to rheumatoid arthritis. Ann Rheum Dis 2009, 68, 1494–1497. [Google Scholar] [CrossRef] [PubMed]
- Hyrenbach, S.; Pezzini, A.; Del Zotto, E.; Giossi, A.; Lichy, C.; Kloss, M.; Werner, I.; Padovani, A.; Brandt, T.; Grond-Ginsbach, C. No association of the -105 promoter polymorphism of the selenoprotein S encoding gene SEPS1 with cerebrovascular disease. Eur J Neurol 2007, 14, 1173–1175. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.; Santiago, J. L.; Varadé, J.; Márquez, A.; Lamas, J. R.; Mendoza, J. L.; de la Calle, H.; Díaz-Rubio, M.; de la Concha, E. G.; Fernández-Gutiérrez, B.; Urcelay, E. Polymorphisms in the selenoprotein S gene: lack of association with autoimmune inflammatory diseases. BMC Genomics 2008, 9. [Google Scholar] [CrossRef]
- Julia Seiderer; J Dambacher; B Kühnlein; S Brand; et al. The Role of the selenoprotein S (SELS) gene - 105G > a promoter polymorphism in inflammatory bowel disease and regulation of SELS gene expression in intestinal inflammation. Tissue Antigens 2007, 70, 238–246. [Google Scholar] [CrossRef]
- Lei, C.; Niu, X.; Wei, J.; Zhu, J.; Zhu, Y. Interaction of glutathione peroxidase-1 and selenium in endemic dilated cardiomyopathy. Clinica Chimica Acta 2009, 399, (1–2). [Google Scholar] [CrossRef]
- Wafa Talbi; Tesnime Ghazouani; Daniela Braconi; Fattouch Sami; et al. Effects of selenium on oxidative damage and antioxidant enzymes of eukaryotic cells: wine Saccharomyces Cerevisiae. J Appl Microbiol 2019, 126, 555–566. [Google Scholar] [CrossRef]
- Cox, A. J.; Lehtinen, A. B.; Xu, J.; Langefeld, C. D.; Freedman, B. I.; Carr, J. J.; Bowden, D. W. Polymorphisms in the selenoprotein S gene and subclinical cardiovascular disease in the diabetes heart study. Acta Diabetol 2013, 50, 391–399. [Google Scholar] [CrossRef]
- Marino, M.; Stoilova, T.; Giorgi, C.; Bachi, A.; Cattaneo, A.; Auricchio, A.; Pinton, P.; Zito, E. SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Hum Mol Genet 2014, 24, 1843–1855. [Google Scholar] [CrossRef]
- Sun, W.; Wang, X.; Zou, X.; Song, R.; Du, X.; Hu, J.; Xiong, Y. Selenoprotein P gene R25191g/a polymorphism and quantification of selenoprotein P mRNA level in patients with Kashin-Beck disease. Br J Nutr. 2010, 104, 1283–1287. [Google Scholar] [CrossRef]
- Han, J.; Wang, W.; Qu, C.; Liu, R.; Li, W.; Gao, Z.; Guo, X. Role of inflammation in the process of clinical Kashin-Beck disease: latest findings and interpretations. Inflamm Res. 2015, 64(1), 853–860. [Google Scholar] [CrossRef] [PubMed]
- Steinbrenner, H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med 2013, 65, 1538–1547. [Google Scholar] [CrossRef] [PubMed]
- Steinbrenner, H.; Duntas, L. H.; Rayman, M. P. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol 2022, 50, 102236. [Google Scholar] [CrossRef] [PubMed]
- Hirofumi Misu; Toshinari Takamura; et al. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab 2010, 12, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Hirofumi Misu; Hiroaki Takayama; et al. Deficiency of the hepatokine selenoprotein p increases responsiveness to exercise in mice through upregulation of reactive oxygen species and AMP-activated protein kinase in muscle. Nat Med 2017, 23, 508–516. [Google Scholar] [CrossRef]
- Burk, R. F.; Hill, K. E. Regulation of selenium metabolism and transport. Annu Rev Nutr., 2015, 35, 109–134. [Google Scholar] [CrossRef]
- Speckmann, B.; Sies, H.; Steinbrenner, H. Attenuation of hepatic expression and secretion of selenoprotein P by metformin. Biochem Biophys Res Commun 2009, 387, 158–163. [Google Scholar] [CrossRef]
- Speckmann, B.; Walter, P. L.; Alili, L.; Reinehr, R.; Sies, H.; Klotz, L. O.; Steinbrenner, H. Selenoprotein P expression is controlled through interaction of the coactivator PGC-1α with FoxO1a and hepatocyte nuclear factor 42α transcription factors. Hepatology 2008, 48, 1998–2006. [Google Scholar] [CrossRef]
- Jackson, M. I.; Cao, J.; Zeng, H.; Uthus, E.; Combs, G. F. S-adenosylmethionine-dependent protein methylation is required for expression of selenoprotein P and gluconeogenic enzymes in HepG2 human hepatocytes. J Biol Chem. 2012, 287, 36455–36464. [Google Scholar] [CrossRef]
- Saito, Y. Selenium transport mechanism via selenoprotein P—its physiological role and related diseases. Front Nutr. 2021, 8, 685517. [Google Scholar] [CrossRef]
- Takayama, H.; Misu, H.; Iwama, H.; Chikamoto, K.; Saito, Y.; Murao, K.; Teraguchi, A.; Lan, F.; Kikuchi, A.; Saito, R.; Tajima, N.; Shirasaki, T.; Matsugo, S.; Miyamoto, K. I.; Kaneko, S.; Takamura, T. Metformin suppresses expression of the selenoprotein P gene via an AMP-activated kinase (AMPK)/FoxO3a pathway in H4IIEC3 hepatocytes. J Biol Chem. 2014, 289, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Tajima-Shirasaki, N.; Ishii, K. A.; Takayama, H.; Shirasaki, T.; Iwama, H.; Chikamoto, K.; Saito, Y.; Iwasaki, Y.; Teraguchi, A.; Lan, F.; Kikuchi, A.; Takeshita, Y.; Murao, K.; Matsugo, S.; Kaneko, S.; Misu, H.; Takamura, T. Eicosapentaenoic acid down-regulates expression of the selenoprotein P gene by inhibiting SREBP-1c protein independently of the AMP-activated protein kinase pathway in H4IIEC3 hepatocytes. J Biol Chem. 2017, 292, 10791–10800. [Google Scholar] [CrossRef]
- Mita, Y.; Nakayama, K.; Inari, S.; Nishito, Y.; Yoshioka, Y.; Sakai, N.; Sotani, K.; Nagamura, T.; Kuzuhara, Y.; Inagaki, K.; Iwasaki, M.; Misu, H.; Ikegawa, M.; Takamura, T.; Noguchi, N.; Saito, Y. Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nat Commun 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Yu, S. S.; Men, L. L.; Wu, J. L.; Huang, L. W.; Xing, Q.; Yao, J. J.; Wang, Y. B.; Song, G. R.; Guo, H. S.; Sun, G. H.; Zhang, Y. H.; Li, H.; Du, J. L. The source of circulating selenoprotein S and its association with type 2 diabetes mellitus and atherosclerosis: a preliminary study. Cardiovasc Diabetol 2016, 15, 70. [Google Scholar] [CrossRef] [PubMed]
- Yu, S. shan; Du, J. ling. Selenoprotein S: a therapeutic target for diabetes and macroangiopathy? Cardiovasc Diabetol. 2017, 16(1), 101. [Google Scholar] [CrossRef]
- Gorini, F.; Vassalle, C. Selenium and selenoproteins at the intersection of type 2 diabetes and thyroid pathophysiology. Antioxidants. 2022, 11(6), 1188. [Google Scholar] [CrossRef]
- Yang Zhao; Pu Chen; et al. Comprehensive analysis of expression and prognostic value of selenoprotein genes in thyroid cancer. Genet Test Mol Biomarkers 2022, 26, 159–173. [Google Scholar] [CrossRef]
- Zhao, L.; Zheng, Y. Y.; Chen, Y.; Ma, Y. T.; Yang, Y. N.; Li, X. M.; Ma, X.; Xie, X. Association of genetic polymorphisms of SelS with type 2 diabetes in a chinese population. Biosci Rep 2018, 38. [Google Scholar] [CrossRef]
- Li, X.; Chen, M.; Yang, Z.; Wang, W.; Lin, H.; Xu, S. Selenoprotein S silencing triggers mouse hepatoma cells apoptosis and necrosis involving in intracellular calcium imbalance and ROS-MPTP-ATP. Biochim Biophy Acta – Gen Subj 2018, 1862, 2113–2123. [Google Scholar] [CrossRef]
- Verma, S.; Hoffmann, F. W.; Kumar, M.; Huang, Z.; Roe, K.; Nguyen-Wu, E.; Hashimoto, A. S.; Hoffmann, P. R. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. The J Immunol. 2011, 186, 2127–2137. [Google Scholar] [CrossRef]
- Kariž, S.; Mankoč, S.; Petrovič, D. Association of thioredoxin reductase 2 (TXNRD2) gene polymorphisms with myocardial infarction in slovene patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2015, 108, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Chen, L. L.; Huang, J. Q.; Xiao, Y.; Wu, Y. Y.; Ren, F. Z.; Lei, X. G. Knockout of selenoprotein V affects regulation of selenoprotein expression by dietary selenium and fat intakes in mice. J Nutr 2020, 150, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiong, W.; Chen, L. L.; Huang, J. Q.; Lei, X. G. Selenoprotein V protects against endoplasmic reticulum stress and oxidative injury induced by pro-oxidants. Free Radic Biol Med 2020, 160, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Corinna Niersman; Stefanie M Hauck; et al. Omentin-regulated proteins combine a pro-inflammatory phenotype with an anti-inflammatory counterregulation in human adipocytes: a proteomics analysis. Diabetes Metab Res Rev. 2019, 35. [Google Scholar] [CrossRef]
- Yin, L.; Cai, W.; Sheng, J.; Sun, Y. Hypoxia Induced Changes of SePP1 Expression in Rat Preadipocytes and Its Impact on Vascular Fibroblasts. Int J Clin Exp Med. 2014. [Google Scholar]
- 219. Yuanyuan Zhang; Xiaoli Chen. Adipose expression and regulation of selenoprotein P in obesity and insulin resistance. FASEB J. [CrossRef]
- Liang, C. P.; Tall, A. R. Transcriptional profiling reveals global defects in energy metabolism, lipoprotein, and bile acid synthesis and transport with reversal by leptin treatment in Ob/Ob mouse liver. J Biol Chem. 2001, 276, 49066–49076. [Google Scholar] [CrossRef]
- Hida, K.; Wada, J.; Zhang, H.; Hiragushi, K.; Tsuchiyama, Y.; Shikata, K.; Makino, H.; Hida, - K; Wada, J. ; Zhang, H.; Hiragushi, K.; Tsuchiyama, Y.; Shikata, K.; Makino, H. Identification of genes specifically expressed in the accumulated visceral adipose tissue of OLETF rats. J Lipid Res. 2000, 41(10), 1615–22. [Google Scholar] [CrossRef]
- Olsson, M.; Olsson, B.; Jacobson, P.; Thelle, D. S.; Björkegren, J.; Walley, A.; Froguel, P.; Carlsson, L. M. S.; Sjöholm, K. Expression of the selenoprotein S (SELS) gene in subcutaneous adipose tissue and SELS genotype are associated with metabolic risk factors. Metabolism 2011, 60, 114–120. [Google Scholar] [CrossRef]
- Uthus, E. O.; Picklo, M. J. Obesity reduces methionine sulphoxide reductase activity in visceral adipose tissue. Free Radic Res 2011, 45, 1052–1060. [Google Scholar] [CrossRef]
- Takamura, T.; Misu, H.; Matsuzawa-Nagata, N.; Sakurai, M.; Ota, T.; Shimizu, A.; Kurita, S.; Takeshita, Y.; Ando, H.; Honda, M.; Kaneko, S. Obesity upregulates genes involved in oxidative phosphorylation in livers of diabetic patients. Obesity 2008, 16, 2601–2609. [Google Scholar] [CrossRef]
| Related disorders/ diseases |
Selenoproteins involved |
|---|---|
| Cardiovascular | T [18], K in association with S, M, N, F (sep15) [14,15,16], P [27] |
| Keshan Disease | P [31,32,33] |
| Liver | |
| NAFLD | P, N, T, W, S [45,46,47,48] |
| Hypercholesterolemia | P, F (sep15) [50] |
| Intestinal | |
| Crohn’s disease and | P [5] |
| colorectal cancer (CRC) | |
| Inflammation (IBD) | S, K [74,75,76] |
| Cancer |
P [88,89] F (sep15) [90] S [91] K [102] K [103,104] |
| Colorectal cancer (CRC) | |
| Lung cancer | |
| Gastric | |
| Tumor suppressor in choriocarcinoma cells | |
| Melanoma progression | |
| Neurological | |
| Alzheimer’s Disease (AD) | M [117], P [129] |
| Parkinson’s Disease (PD) | P [137,140], T [140] |
| Epilepsy | W [152], P [154] |
| Muscular | W [156,157,158,159] |
| White Muscle Disease (WMD) | |
| Multiminicore Disease (MmC) | N [160-162} |
| Immune response | S [176], K [177,178] |
| Wound healing | S, P [189,190,191] |
| Kashin-Beck Disease (KBD) | P [193] |
| Type 2 Diabetes Mellitus | P [217,218], S [222], R [223], N, W [224] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).