Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Exploration of Temperature-Induced Quantum Proton Tunneling Probability in PCR-Mediated DNA Amplification

Version 1 : Received: 9 September 2023 / Approved: 15 September 2023 / Online: 19 September 2023 (05:18:03 CEST)

A peer-reviewed article of this Preprint also exists.

De Luna J (2023) Exploration of Temperature-Induced Quantum Proton Tunneling Probability in PCR-Mediated DNA Amplification. J Bio Energetics. 11:228 De Luna J (2023) Exploration of Temperature-Induced Quantum Proton Tunneling Probability in PCR-Mediated DNA Amplification. J Bio Energetics. 11:228

Abstract

This study investigates the impact of temperature-induced quantum proton tunneling probability on DNA amplification during polymerase chain reactions (PCR). Using a simulation model based on a Gaussian wavefunction and finite-difference time-domain method, quantum tunneling of protons across square potential barriers is examined. The results unveil consistent probability distributions for quantum tunneling across various PCR temperatures, with distinct oscillation patterns emerging post-barrier crossing. Acknowledging limitations in initial conditions due to temperature-dependent proton energy, the study highlights the need for refined models and experimental validation. These findings accentuate the potential interplay between quantum mechanics and biological systems, prompting further research to understand quantum tunnelling’s comprehensive effect on genetic variations and molecular processes.

Keywords

genetics; molecular biology; biophysics; quantum mechanics

Subject

Physical Sciences, Biophysics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.