Submitted:
11 September 2023
Posted:
14 September 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Mechanisms by which the gut microbiota mediates the development of hepatocellular carcinoma
Gut microbiome as a diagnostic biomarker to detect HCC
Gut microbiome as a marker in immunotherapy response
Gut microbiome as therapeutic target
Antibiotics
Probiotics and prebiotics
Fecal Microbiota Transplantation
Future outlook
| Study | (N) | Etiology | Method | Bacteria associated with HCC compared to other groups | Ref |
|---|---|---|---|---|---|
| Ren et al. | HCC (150), 40 cirrhosis (40), healthy controls (131) | HBV | 16S rRNA sequencing | HCC: Klebsiella and Haemophilus, (LPS-producing bacteria) Control: Ruminococcus, Oscillibacter, Faecalibacterium, Clostridium IV and Coprococcus, (butyrate-producing bacteria) |
[12] |
| Ponziani et al. | NAFLD-related cirrhosis and HCC (21), NAFLD-related cirrhosis without HCC (20), healthy controls (20) |
NAFLD | 16S rRNA sequencing | HCC: Bacteroidetes at the phylum level, Bacteroidaceae, Streptococcaceae , Enterococcaceae , and Gemellaceae at the family level; and Phascolarctobacterium, Enterococcus, Streptococcus, Gemella, and Bilophila at the genus level |
[17] |
| Behary et al. | NAFLD-HCC (32), NAFLD-cirrhosis (28), non-NAFLD controls (30) | NAFLD | Shotgun metagenomic sequencing | NAFLD-HCC (vs non-NAFLD controls): Abundance in Enterobacteriaceae and a reduction in Oscillospiraceae and Erysipelotrichaceae. NAFLD-cirrhosis (vs non-NAFLD controls): an expansion of Eubacteriaceae and a reduction in several Bacteroidetes families. |
[8] |
| Huang et al. | HCC (113), healthy controls (100) | HBV | 16S rRNA sequencing | HCC: Bacteroides, Lachnospiracea incertae sedis, and Clostridium XIVa | [18] |
| Lapidot et al. | cirrhosis (38), HCC-cirrhosis (30), age- and BMI-matched healthy controls (27) | NAFLD and HCV | 16S rRNA sequencing | HCC-cirrhosis: Redcution in butyrate-producing bacteria Ruminococcaceae, Butyricicoccus , and Lachnospiraceae and abundance of genera Lachnospira, Anaerostipes , and Christensenella. | [16] |
| Liu et al. | Healthy controls (3), HBV-HCC (35), non-HBV non-HCV related HCC (NBNC-HCC) (22) | HBV-related HCC and non-HBV non-HCV (NBNC) HCC | 16S rRNA sequencing | B-HCC (vs healthy controls): Prevotella, Phascolarctobacterium, and Anaerotruncus NBNC-HCC (vs healthy controls): Escherichia-Shigella and Enterococcus | [19] |
| Cho et al. | HCC (158), cirrhosis (166), healthy controls (402) | Viral and non-viral | Metagenomic sequencing - | HCC: Abundance of Staphylococcus, Acinetobacter, Klebsiella and Trabulsiella, reduction of Pseudomonas, Streptococcus and Bifidobacterium | [25] |
| Huang et al | 28 normal liver, 64 peritumoral, and 64 HCC tissues | Viral and non-viral | 16S rRNA sequencing | HCC: Patescibacteria, Proteobacteria, Bacteroidota, Firmicutes, and Actinobacteriota at the phylum level. HCC and peritumoral tissues: Proteobacteria, Firmicutes, and Actinobacteriota at the phylum level, and classes of Bacilli and Actinobacteria, |
[23] |
| Li et al. | HCC (68), cirrhosis (33), healthy individuals (34) | Viral and non-viral | Metagenome sequencing LC-MS for metabolite |
HCC: Odoribacter splanchnicus and Ruminococcus bicirculans) and five key metabolites (ouabain, taurochenodeoxycholic acid, glycochenodeoxycholate, theophylline, and xanthine) | [38] |
| Study | N | Method | Bacteria associated with response (R) or non-response (NR) | Immunotherapy | Ref |
|---|---|---|---|---|---|
| Ll et al. | 65 | 16S rRNA sequencing | R: Faecalibacterium and Bacteroidales, | ICIs (unspecified) | [30] |
| Zheng et al | 8 | metagenomic sequencing | R: Akkermansia and Ruminococcaceae NR: Proteobacteria |
Anti-PD-1 treatment | [31] |
| Chung et al. | 8 | 16S rRNA sequencing | R: Dialister pneumosintes, Escherichia coli, Lactobacillus reteri, Streptococcus mutans, Enterococcus faecium, Streptococcus gordonii, Veillonella atypica, Granulicatella sp., and Trchuris trichiura for the non-responders; Citrobacter freundii, Azospirillum sp. and Enterococcus durans R: A higher Prevotella species to Bacteroides species (P/B) ratio R: Akkermansia species |
nivolumab | [34] |
| Wu et al. | 61 patients | 16S rRNA sequencing | R: Faecalibacterium, Blautia, Lachnospiracea incertae Sedis, Megamonas, Ruminococcus, Coprococcus, Dorea, and Haemophilus NR: Atopobium, Leptotrichia, Campylobacter, Allisonella, Methanobrevibacter, Parabacteroides, Bifidobacterium, and Lactobacillus |
Anti-PD-1 treatment | [37] |
| Lee et al. | 41 patients | 16S rRNA sequencing | R: Lachnoclostridium, Lachnospiraceae, and Veillonella NR: Prevotella 9 |
nivolumab and pembrolizumab | [39] |
| Peng et al | 85 patients with gastrointestinal cancers | 16S rRNA sequencing | R: Ruminococcaceae, Prevotella, and Lachnospiraceae NR: Bacteroides, Catenibacterium, Ruminococcaceae_NK4A214_group. |
anti-PD-1/PD-L1 treatment | [32] |
| Clinical trial | Official Title | Intervention | Research purpose | Primary outcome | Status |
|---|---|---|---|---|---|
| NCT03785210 | Phase II Study of Nivolumab (Anti-PD1), Tadalafil and Oral Vancomycin in Patients With Refractory Primary Hepatocellular Carcinoma or Liver Dominant Metastatic Cancer From Colorectal or Pancreatic Cancers | Vancomycin | To investigate if nivolumab given with tadalafil and vancomycin causes liver cancer to shrink. | Best overall response | Completed |
| NCT05032014 | Probiotics Enhance the Treatment of PD-1 Inhibitors in Patients With Liver Cancer |
Probio-M9 | To assess whether probiotics can improve the efficacy of ICI |
Proportion of patients whose tumor volume shrinks to a predetermined value and maintains the minimum time limit |
Recruiting |
| NCT04264975 | Utilization of Microbiome as Biomarkers and Therapeutics in Immuno-Oncology | FMT | To evaluate whether the fecal microbiota transplantation (FMT) could help overcome resistance in pts with advanced solid cancer refractory to anti-PD-(L)1 inhibitors | Overall response rate | Unknown |
| NCT05690048 | Fecal Microbiota Transfer in Liver Cancer to Overcome Resistance to Atezolizumab/Bevacizumab | FMT | To assess safety and immunogenicity of fecal microbiota transfer in combination with standard of care immunotherapy in advanced hepatocellular carcinoma | Differential tumoral CD8 T-cell infiltration Adverse event documentation of FMT in advanced HCC |
Not yet recruiting |
| NCT05750030 | Fecal Microbiota Transplant (FMT) Combined With Atezolizumab Plus Bevacizumab in Patients With HepatoCellular Carcinoma Who Failed to Respond to Prior Immunotherapy - the FAB-HCC Pilot Study | FMT | To assess the safety of FMT combined with atezolizumab plus bevacizumab, as measured by incidence and severity of treatment-related adverse events | Safety of atezolizumab/bevacizumab in combination with FMT, measured by incidence and severity of treatment-related adverse events, determined according to National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events (CTCAE) | Not yet recruiting |
References
- Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nature Reviews Disease Primers 2016, 2, 16018. [Google Scholar] [CrossRef] [PubMed]
- Gok Yavuz, B.; Hasanov, E.; Lee, S.S.; Mohamed, Y.I.; Curran, M.A.; Koay, E.J.; Cristini, V.; Kaseb, A.O. Current Landscape and Future Directions of Biomarkers for Immunotherapy in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021, 8, 1195–1207. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.R.; Aggarwal, P.; Costa, R.G.F.; Cole, A.M.; Trinchieri, G. Targeting the gut microbiota for cancer therapy. Nature Reviews Cancer 2022, 22, 703–722. [Google Scholar] [CrossRef]
- He, Y.; Huang, J.; Li, Q.; Xia, W.; Zhang, C.; Liu, Z.; Xiao, J.; Yi, Z.; Deng, H.; Xiao, Z.; et al. Gut Microbiota and Tumor Immune Escape: A New Perspective for Improving Tumor Immunotherapy. Cancers (Basel) 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Myojin, Y.; Greten, T.F. The Microbiome and Liver Cancer. Cancer J. 2023, 29, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Loo, T.M.; Kamachi, F.; Watanabe, Y.; Yoshimoto, S.; Kanda, H.; Arai, Y.; Nakajima-Takagi, Y.; Iwama, A.; Koga, T.; Sugimoto, Y.; et al. Gut Microbiota Promotes Obesity-Associated Liver Cancer through PGE(2)-Mediated Suppression of Antitumor Immunity. Cancer Discov. 2017, 7, 522–538. [Google Scholar] [CrossRef]
- Ma, C.; Han, M.; Heinrich, B.; Fu, Q.; Zhang, Q.; Sandhu, M.; Agdashian, D.; Terabe, M.; Berzofsky, J.A.; Fako, V.; et al. Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science 2018, 360, eaan5931. [Google Scholar] [CrossRef]
- Behary, J.; Amorim, N.; Jiang, X.T.; Raposo, A.; Gong, L.; McGovern, E.; Ibrahim, R.; Chu, F.; Stephens, C.; Jebeili, H.; et al. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat Commun 2021, 12, 187. [Google Scholar] [CrossRef]
- Schneider, K.M.; Mohs, A.; Gui, W.; Galvez, E.J.C.; Candels, L.S.; Hoenicke, L.; Muthukumarasamy, U.; Holland, C.H.; Elfers, C.; Kilic, K.; et al. Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment. Nature Communications 2022, 13, 3964. [Google Scholar] [CrossRef]
- Rossi, T.; Vergara, D.; Fanini, F.; Maffia, M.; Bravaccini, S.; Pirini, F. Microbiota-Derived Metabolites in Tumor Progression and Metastasis. Int. J. Mol. Sci. 2020, 21. [Google Scholar] [CrossRef]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef]
- Ren, Z.; Li, A.; Jiang, J.; Zhou, L.; Yu, Z.; Lu, H.; Xie, H.; Chen, X.; Shao, L.; Zhang, R.; et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 2019, 68, 1014–1023. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Loo, T.M.; Atarashi, K.; Kanda, H.; Sato, S.; Oyadomari, S.; Iwakura, Y.; Oshima, K.; Morita, H.; Hattori, M.; et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013, 499, 97–101. [Google Scholar] [CrossRef]
- Yamagishi, R.; Kamachi, F.; Nakamura, M.; Yamazaki, S.; Kamiya, T.; Takasugi, M.; Cheng, Y.; Nonaka, Y.; Yukawa-Muto, Y.; Thuy, L.T.T.; et al. Gasdermin D–mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Science Immunology 2022, 7, eabl7209. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Wang, G.; Pang, Z.; Ran, N.; Gu, Y.; Guan, X.; Yuan, Y.; Zuo, X.; Pan, H.; Zheng, J.; et al. Liver cirrhosis contributes to the disorder of gut microbiota in patients with hepatocellular carcinoma. Cancer Med 2020, 9, 4232–4250. [Google Scholar] [CrossRef] [PubMed]
- Lapidot, Y.; Amir, A.; Nosenko, R.; Uzan-Yulzari, A.; Veitsman, E.; Cohen-Ezra, O.; Davidov, Y.; Weiss, P.; Bradichevski, T.; Segev, S.; et al. Alterations in the Gut Microbiome in the Progression of Cirrhosis to Hepatocellular Carcinoma. mSystems 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Ponziani, F.R.; Bhoori, S.; Castelli, C.; Putignani, L.; Rivoltini, L.; Del Chierico, F.; Sanguinetti, M.; Morelli, D.; Paroni Sterbini, F.; Petito, V.; et al. Hepatocellular Carcinoma Is Associated With Gut Microbiota Profile and Inflammation in Nonalcoholic Fatty Liver Disease. Hepatology 2019, 69, 107–120. [Google Scholar] [CrossRef]
- Huang, H.; Ren, Z.; Gao, X.; Hu, X.; Zhou, Y.; Jiang, J.; Lu, H.; Yin, S.; Ji, J.; Zhou, L.; et al. Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma. Genome Med. 2020, 12, 102. [Google Scholar] [CrossRef]
- Liu, Q.; Li, F.; Zhuang, Y.; Xu, J.; Wang, J.; Mao, X.; Zhang, Y.; Liu, X. Alteration in gut microbiota associated with hepatitis B and non-hepatitis virus related hepatocellular carcinoma. Gut Pathog. 2019, 11, 1. [Google Scholar] [CrossRef]
- Yang, L.; Li, A.; Wang, Y.; Zhang, Y. Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduction and Targeted Therapy 2023, 8, 35. [Google Scholar] [CrossRef]
- Miranda, N.F.d.; Smit, V.T.; Ploeg, M.v.d.; Wesseling, J.; Neefjes, J. Absence of Lipopolysccharide (LPS) expression in Breast Cancer Cells. bioRxiv 2023, 2023.2008.2028.555057. [Google Scholar] [CrossRef]
- Komiyama, S.; Yamada, T.; Takemura, N.; Kokudo, N.; Hase, K.; Kawamura, Y.I. Profiling of tumour-associated microbiota in human hepatocellular carcinoma. Sci. Rep. 2021, 11, 10589. [Google Scholar] [CrossRef]
- Huang, J.-H.; Wang, J.; Chai, X.-Q.; Li, Z.-C.; Jiang, Y.-H.; Li, J.; Liu, X.; Fan, J.; Cai, J.-B.; Liu, F. The Intratumoral Bacterial Metataxonomic Signature of Hepatocellular Carcinoma. Microbiology Spectrum 2022, 10, e00983–00922. [Google Scholar] [CrossRef]
- You, L.; Zhou, J.; Xin, Z.; Hauck, J.S.; Na, F.; Tang, J.; Zhou, X.; Lei, Z.; Ying, B. Novel directions of precision oncology: circulating microbial DNA emerging in cancer-microbiome areas. Precis Clin Med 2022, 5, pbac005. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.J.; Leem, S.; Kim, S.A.; Yang, J.; Lee, Y.B.; Kim, S.S.; Cheong, J.Y.; Cho, S.W.; Kim, J.W.; Kim, S.-M.; et al. Circulating Microbiota-Based Metagenomic Signature for Detection of Hepatocellular Carcinoma. Sci. Rep. 2019, 9, 7536. [Google Scholar] [CrossRef] [PubMed]
- Demir, T.; Lee, S.S.; Kaseb, A.O. Systemic therapy of liver cancer. In Adv. Cancer Res.; Academic Press, 2021. [Google Scholar]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H.R.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018, 19, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ye, J. Characterization of gut microbiota in patients with primary hepatocellular carcinoma received immune checkpoint inhibitors: A Chinese population-based study. Medicine (Baltimore) 2020, 99, e21788. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, T.; Tu, X.; Huang, Y.; Zhang, H.; Tan, D.; Jiang, W.; Cai, S.; Zhao, P.; Song, R.; et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J Immunother Cancer 2019, 7, 193. [Google Scholar] [CrossRef]
- Peng, Z.; Cheng, S.; Kou, Y.; Wang, Z.; Jin, R.; Hu, H.; Zhang, X.; Gong, J.-f.; Li, J.; Lu, M.; et al. The Gut Microbiome Is Associated with Clinical Response to Anti–PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer. Cancer Immunology Research 2020, 8, 1251–1261. [Google Scholar] [CrossRef]
- Ponziani, F.R.; De Luca, A.; Picca, A.; Marzetti, E.; Petito, V.; Del Chierico, F.; Reddel, S.; Paroni Sterbini, F.; Sanguinetti, M.; Putignani, L.; et al. Gut Dysbiosis and Fecal Calprotectin Predict Response to Immune Checkpoint Inhibitors in Patients With Hepatocellular Carcinoma. Hepatology Communications 2022, 6, 1492–1501. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.W.; Kim, M.J.; Won, E.J.; Lee, Y.J.; Yun, Y.W.; Cho, S.B.; Joo, Y.E.; Hwang, J.E.; Bae, W.K.; Chung, I.J.; et al. Gut microbiome composition can predict the response to nivolumab in advanced hepatocellular carcinoma patients. World J. Gastroenterol. 2021, 27, 7340–7349. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Yu, S.; Qin, S.; Liu, Q.; Xu, H.; Zhao, W.; Chu, Q.; Wu, K. Gut microbiome modulates efficacy of immune checkpoint inhibitors. J. Hematol. Oncol. 2018, 11, 47. [Google Scholar] [CrossRef]
- Shen, Y.C.; Lee, P.C.; Kuo, Y.L.; Wu, W.K.; Chen, C.C.; Lei, C.H.; Yeh, C.P.; Hsu, C.; Hsu, C.H.; Lin, Z.Z.; et al. An Exploratory Study for the Association of Gut Microbiome with Efficacy of Immune Checkpoint Inhibitor in Patients with Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021, 8, 809–822. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zheng, X.; Pan, T.; Yang, X.; Chen, X.; Zhang, B.; Peng, L.; Xie, C. Dynamic microbiome and metabolome analyses reveal the interaction between gut microbiota and anti-PD-1 based immunotherapy in hepatocellular carcinoma. Int. J. Cancer 2022, 151, 1321–1334. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yi, Y.; Wu, T.; Chen, N.; Gu, X.; Xiang, L.; Jiang, Z.; Li, J.; Jin, H. Integrated microbiome and metabolome analysis reveals the interaction between intestinal flora and serum metabolites as potential biomarkers in hepatocellular carcinoma patients. Front Cell Infect Microbiol 2023, 13, 1170748. [Google Scholar] [CrossRef]
- Lee, P.-C.; Wu, C.-J.; Hung, Y.-W.; Lee, C.J.; Chi, C.-T.; Lee, I.-C.; Yu-Lun, K.; Chou, S.-H.; Luo, J.-C.; Hou, M.-C.; et al. Gut microbiota and metabolites associate with outcomes of immune checkpoint inhibitor–treated unresectable hepatocellular carcinoma. Journal for ImmunoTherapy of Cancer 2022, 10, e004779. [Google Scholar] [CrossRef]
- Yu, L.X.; Yan, H.X.; Liu, Q.; Yang, W.; Wu, H.P.; Dong, W.; Tang, L.; Lin, Y.; He, Y.Q.; Zou, S.S.; et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 2010, 52, 1322–1333. [Google Scholar] [CrossRef]
- Dapito, Dianne H. ; Mencin, A.; Gwak, G.-Y.; Pradere, J.-P.; Jang, M.-K.; Mederacke, I.; Caviglia, Jorge M.; Khiabanian, H.; Adeyemi, A.; Bataller, R.; et al. Promotion of Hepatocellular Carcinoma by the Intestinal Microbiota and TLR4. Cancer Cell 2012, 21, 504–516. [Google Scholar] [CrossRef]
- Bass, N.M.; Mullen, K.D.; Sanyal, A.; Poordad, F.; Neff, G.; Leevy, C.B.; Sigal, S.; Sheikh, M.Y.; Beavers, K.; Frederick, T.; et al. Rifaximin treatment in hepatic encephalopathy. N. Engl. J. Med. 2010, 362, 1071–1081. [Google Scholar] [CrossRef]
- Vlachogiannakos, J.; Viazis, N.; Vasianopoulou, P.; Vafiadis, I.; Karamanolis, D.G.; Ladas, S.D. Long-term administration of rifaximin improves the prognosis of patients with decompensated alcoholic cirrhosis. J. Gastroenterol. Hepatol. 2013, 28, 450–455. [Google Scholar] [CrossRef]
- Xu, H.; Xu, X.; Wang, H.; Ge, W.; Cao, D. The association between antibiotics use and outcome of cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2020, 149, 102909. [Google Scholar] [CrossRef]
- Wilson, B.E.; Routy, B.; Nagrial, A.; Chin, V.T. The effect of antibiotics on clinical outcomes in immune-checkpoint blockade: a systematic review and meta-analysis of observational studies. Cancer Immunol. Immunother. 2020, 69, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.S.; Lam, L.K.; Seto, W.K.; Leung, W.K. Use of Antibiotics during Immune Checkpoint Inhibitor Treatment Is Associated with Lower Survival in Hepatocellular Carcinoma. Liver Cancer 2021, 10, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Alshammari, K.; Alsugheir, F.; Aldawoud, M.; Alolayan, A.; Algarni, M.A.; Sabatin, F.; Mohammad, M.F.; Alosaimi, A.; Sanai, F.; Odah, H.; et al. Association between antibiotic exposure and survival in patients with hepatocellular carcinoma treated with nivolumab. J. Clin. Oncol. 2021, 39, e16186–e16186. [Google Scholar] [CrossRef]
- Spahn, S.; Roessler, D.; Pompilia, R.; Gabernet, G.; Gladstone, B.P.; Horger, M.; Biskup, S.; Feldhahn, M.; Nahnsen, S.; Hilke, F.J.; et al. Clinical and Genetic Tumor Characteristics of Responding and Non-Responding Patients to PD-1 Inhibition in Hepatocellular Carcinoma. Cancers (Basel) 2020, 12, 3830. [Google Scholar] [CrossRef] [PubMed]
- Fessas, P.; Naeem, M.; Pinter, M.; Marron, T.U.; Szafron, D.; Balcar, L.; Saeed, A.; Jun, T.; Dharmapuri, S.; Gampa, A.; et al. Early Antibiotic Exposure Is Not Detrimental to Therapeutic Effect from Immunotherapy in Hepatocellular Carcinoma. Liver Cancer 2021, 10, 583–592. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, C.; Chai, D.; Li, C.; Guan, Y.; Liu, L.; Kuang, T.; Deng, W.; Wang, W. The association between antibiotic use and outcomes of HCC patients treated with immune checkpoint inhibitors. Front. Immunol. 2022, 13, 956533. [Google Scholar] [CrossRef]
- B. , M.C.M.; Xie, C.; Mabry-Hrones, D.; Wood, B.J.; Steinberg, S.M.; Kleiner, D.E.; Greten, T.F. Phase II study of nivolumab (anti-PD1), tadalafil, and oral vancomycin in patients with refractory primary hepatocellular carcinoma or liver dominant metastatic cancer from colorectal or pancreatic cancers. J. Clin. Oncol. 2020, 38, TPS4656–TPS4656. [Google Scholar] [CrossRef]
- Pomej, K.; Balcar, L.; Scheiner, B.; Semmler, G.; Meischl, T.; Mandorfer, M.; Reiberger, T.; Müller, C.; Trauner, M.; Pinter, M. Antibiotic Therapy is Associated with Worse Outcome in Patients with Hepatocellular Carcinoma Treated with Sorafenib. J Hepatocell Carcinoma 2021, 8, 1485–1493. [Google Scholar] [CrossRef] [PubMed]
- YAMAMOTO, K.; KUZUYA, T.; HONDA, T.; ITO, T.; ISHIZU, Y.; NAKAMURA, M.; MIYAHARA, R.; KAWASHIMA, H.; ISHIGAMI, M.; FUJISHIRO, M. Relationship Between Adverse Events and Microbiomes in Advanced Hepatocellular Carcinoma Patients Treated With Sorafenib. Anticancer Res. 2020, 40, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Thilakarathna, W.; Rupasinghe, H.P.V.; Ridgway, N.D. Mechanisms by Which Probiotic Bacteria Attenuate the Risk of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2021, 22. [Google Scholar] [CrossRef]
- Elshaer, A.M.; El-Kharashi, O.A.; Hamam, G.G.; Nabih, E.S.; Magdy, Y.M.; Abd El Samad, A.A. Involvement of TLR4/ CXCL9/ PREX-2 pathway in the development of hepatocellular carcinoma (HCC) and the promising role of early administration of lactobacillus plantarum in Wistar rats. Tissue Cell 2019, 60, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sung, C.Y.; Lee, N.; Ni, Y.; Pihlajamäki, J.; Panagiotou, G.; El-Nezami, H. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, E1306–1315. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Q.; Zhang, Y.; Bi, Y.; Zeng, X.; Wang, X. Association between probiotic therapy and the risk of hepatocellular carcinoma in patients with hepatitis B-related cirrhosis. Front Cell Infect Microbiol 2022, 12, 1104399. [Google Scholar] [CrossRef]
- Dizman, N.; Meza, L.; Bergerot, P.; Alcantara, M.; Dorff, T.; Lyou, Y.; Frankel, P.; Cui, Y.; Mira, V.; Llamas, M.; et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat. Med. 2022, 28, 704–712. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef]
- Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018, 359, 104–108. [Google Scholar] [CrossRef]
- NCT05032014. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05032014 (accessed on 8/28/2023).
- Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B.; et al. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 2010, 104 Suppl 2, S1–63. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Spencer, C.N.; McQuade, J.L.; Gopalakrishnan, V.; McCulloch, J.A.; Vetizou, M.; Cogdill, A.P.; Khan, M.A.W.; Zhang, X.; White, M.G.; Peterson, C.B.; et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 2021, 374, 1632–1640. [Google Scholar] [CrossRef] [PubMed]
- Bindels, L.B.; Porporato, P.; Dewulf, E.M.; Verrax, J.; Neyrinck, A.M.; Martin, J.C.; Scott, K.P.; Buc Calderon, P.; Feron, O.; Muccioli, G.G.; et al. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br. J. Cancer 2012, 107, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-L.; Yu, L.-X.; Yang, W.; Tang, L.; Lin, Y.; Wu, H.; Zhai, B.; Tan, Y.-X.; Shan, L.; Liu, Q.; et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J. Hepatol. 2012, 57, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Merrick, B.; Allen, L.; Masirah, M.Z.N.; Forbes, B.; Shawcross, D.L.; Goldenberg, S.D. Regulation, risk and safety of Faecal Microbiota Transplant. Infect Prev Pract 2020, 2, 100069. [Google Scholar] [CrossRef]
- Baruch, E.N.; Youngster, I.; Ben-Betzalel, G.; Ortenberg, R.; Lahat, A.; Katz, L.; Adler, K.; Dick-Necula, D.; Raskin, S.; Bloch, N.; et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021, 371, 602–609. [Google Scholar] [CrossRef]
- Kim, G.; Kim, Y.; Cho, B.; Kim, S.-Y.; Do, E.-J.; Bae, D.-J.; Kweon, M.-N.; Song, J.S.; Park, H. Fecal microbiota transplantation combined with anti-PD-1 inhibitor for unresectable or metastatic solid cancers refractory to anti-PD-1 inhibitor. J. Clin. Oncol. 2023, 41, 105–105. [Google Scholar] [CrossRef]
- NCT05690048. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05690048 (accessed on 8/2/2023).
- NCT05750030. Available online: https://clinicaltrials.gov/study/NCT05750030?cond=Hepatocellular%20Carcinoma%20OR%20liver%20cancer&intr=fecal%20microbiota&rank=2 (accessed on 8/2/2023).
- Varatharajalu, K.; Shatila, M.; Campbell, M.T.; Msaouel, P.; Kovitz, C.A. First-line treatment of fecal microbiota transplantation for immune-mediated colitis. J. Clin. Oncol. 2023, 41, 2510–2510. [Google Scholar] [CrossRef]
- Nicholas, W.; Smith, N.; Dai, A.; Slingerland, J.B.; Aleynick, N.; Lumish, M.A.; Giardina, P.; Chaft, J.E.; Chapman, P.B.; Eng, J.; et al. Fecal microbiota transplantation for refractory immune-checkpoint-inhibitor colitis. J. Clin. Oncol. 2023, 41, 2657–2657. [Google Scholar] [CrossRef]
- Wang, Y.; Wiesnoski, D.H.; Helmink, B.A.; Gopalakrishnan, V.; Choi, K.; DuPont, H.L.; Jiang, Z.-D.; Abu-Sbeih, H.; Sanchez, C.A.; Chang, C.-C.; et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat. Med. 2018, 24, 1804–1808. [Google Scholar] [CrossRef]
- Zhou, W.; Chow, K.H.; Fleming, E.; Oh, J. Selective colonization ability of human fecal microbes in different mouse gut environments. Isme j 2019, 13, 805–823. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
