Submitted:
11 September 2023
Posted:
12 September 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Data and Pre-Processing
2.1. Data source
2.2. Data preprocessing
3. Model Development
3.1.1. D CNN/SVR model design
3.2. Inversion model evaluation metrics
4. Experiments and Results
4.1. Model performance evaluation
4.2. Evaluation of the inversion capability of the model at different trophic levels

5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kasprzak, P. , et al., Chlorophyll a concentration across a trophic gradient of lakes: An estimator of phytoplankton biomass? Limnologica 2008, 38, 327–338. [Google Scholar] [CrossRef]
- Amin, S. , et al., Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 2015, 522, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Ma, J. , et al., Controlling cyanobacterial blooms by managing nutrient ratio and limitation in a large hyper-eutrophic lake: Lake Taihu, China. Journal of Environmental Sciences 2015, 27, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.W. , et al., Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environmental toxicology and chemistry 2016, 35, 6–13. [Google Scholar] [CrossRef]
- Lopez, C. , et al., Scientific assessment of freshwater harmful algal blooms. 2008.
- Madrid, Y. and Z.P. Zayas, Water sampling: Traditional methods and new approaches in water sampling strategy. TrAC Trends in Analytical Chemistry 2007, 26, 293–299. [Google Scholar] [CrossRef]
- O'Reilly, J.E. and PJ. Werdell, Chlorophyll algorithms for ocean color sensors - OC4, OC5 & OC6. Remote Sensing of Environment 2019, 229, 32–47. [Google Scholar]
- Hu, C. , A novel ocean color index to detect floating algae in the global oceans. Remote Sensing of Environment 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Blondeau-Patissier, D. , et al., A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Progress in Oceanography 2014, 123, 123–144. [Google Scholar] [CrossRef]
- Tilstone, G.H. , et al., Performance of Ocean Colour Chlorophyll a algorithms for Sentinel-3 OLCI, MODIS-Aqua and Suomi-VIIRS in open-ocean waters of the Atlantic. Remote Sensing of Environment 2021, 260, 112444. [Google Scholar] [CrossRef]
- O'Reilly, J.E. and P.J. Werdell, Chlorophyll algorithms for ocean color sensors - OC4, OC5 & OC6. Remote Sensing of Environment 2019, 229, 32–47. [Google Scholar]
- Hu, C. L. And and B. Franz, Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research: Oceans 2012. [Google Scholar] [CrossRef]
- Gurlin, D., A. A. Gitelson and W.J. Moses, Remote estimation of chl-a concentration in turbid productive waters — Return to a simple two-band NIR-red model? Remote Sensing of Environment 2011, 115, 3479–3490. [Google Scholar] [CrossRef]
- Dall Olmo, G. and A.A. Gitelson, Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results. Applied Optics 2005, 44, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Li, L. , et al., Estimating chlorophyll a concentration in lake water using space-borne hyperspectral data, in Geoscience & Remote Sensing Symposium. 2010.
- Liu, F.F. , et al., Retrieval of chlorophyll a concentration from a fluorescence enveloped area using hyperspectral data. International Journal of Remote Sensin 2011, 32, 3611–3623. [Google Scholar] [CrossRef]
- Gower, J. , On the use of satellite-measured chlorophyll fluorescence for monitoring coastal waters. International Journal of Remote Sensing 2015, 37, 1–10. [Google Scholar] [CrossRef]
- Neil, C.S.E.H. , A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types. Remote Sensing of Environment: An Interdisciplinary Journal 2019, 229. [Google Scholar] [CrossRef]
- Pahlevan, N. , et al., Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sensing of Environment 2020, 240, 111604. [Google Scholar] [CrossRef]
- Hafeez, S. , et al., Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study of Hong Kong. Remote Sensing 2019, 11, 617. [Google Scholar] [CrossRef]
- Le, C. , et al., Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary. Remote Sensing of Environment 2013, 129, 75–89. [Google Scholar] [CrossRef]
- Sadaiappan, B. , et al., Applications of Machine Learning in Chemical and Biological Oceanography. ACS Omega 2023, 8, 15831–15853. [Google Scholar] [CrossRef]
- Zhao, X. , et al., Comparing deep learning with several typical methods in prediction of assessing chlorophyll-a by remote sensing: a case study in Taihu Lake, China. 2021.
- Yu, B. , et al., Global chlorophyll-a concentration estimation from moderate resolution imaging spectroradiometer using convolutional neural networks. Journal of Applied Remote Sensing 2020, 14. [Google Scholar]
- Li, Z. , et al., A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and Learning Systems 2021. [Google Scholar]
- Tang, W. , et al., Rethinking 1D-CNN for Time Series Classification: A Stronger Baseline. 2020.
- Seegers, B.N. , et al., Performance metrics for the assessment of satellite data products: an ocean color case study. Optics Express 2018, 26, 7404–7422. [Google Scholar] [CrossRef] [PubMed]










| Data type | Before preprocessing | After preprocessing | ||||
|---|---|---|---|---|---|---|
| Min | Max | Mean | Min | Max | Mean | |
| Rrs_412(sr-1) | -0.00354 | 0.01914 | 0.00336 | 0.00001 | 0.01914 | 0.00355 |
| Rrs_443(sr-1) | -0.00201 | 0.02393 | 0.00327 | 0.00009 | 0.02393 | 0.00344 |
| Rrs_469(sr-1) | -0.00129 | 0.02973 | 0.00373 | 0.00055 | 0.02973 | 0.00388 |
| Rrs_488(sr-1) | -0.00073 | 0.03174 | 0.00378 | 0.00049 | 0.03174 | 0.00392 |
| Rrs_531(sr-1) | 0.000883 | 0.02765 | 0.00415 | 0.00088 | 0.02765 | 0.00425 |
| Rrs_547(sr-1) | 0.000846 | 0.02539 | 0.00418 | 0.00102 | 0.02539 | 0.00427 |
| Rrs_555(sr-1) | 0.000795 | 0.02306 | 0.00403 | 0.00102 | 0.02306 | 0.00410 |
| Rrs_645(sr-1) | -0.00047 | 0.01438 | 0.00156 | 0.00001 | 0.01438 | 0.00159 |
| Rrs_667(sr-1) | -0.00041 | 0.01277 | 0.00127 | 0.00001 | 0.01277 | 0.00130 |
| Rrs_678(sr-1) | -0.00032 | 0.01226 | 0.00130 | 0.00002 | 0.01226 | 0.00133 |
| Chl-a(mg/m³) | 0.019 | 58.099 | 4.945 | 0.019 | 46.350 | 4.708 |
| Algorithm | R² | Slope | RMSE(mg/m³) | RMLSE | Bias | MAE |
|---|---|---|---|---|---|---|
| OCI | 0.808 | 0.923 | 22.102 | 0.089 | 0.853 | 1.662 |
| SVR | 0.829 | 0.914 | 16.572 | 0.082 | 1.081 | 1.524 |
| RFR | 0.871 | 0.849 | 12.565 | 0.062 | 1.053 | 1.512 |
| 1DCNN | 0.874 | 0.888 | 18.968 | 0.060 | 1.144 | 1.494 |
| 1DCNN/SVR | 0.892 | 0.879 | 11.243 | 0.052 | 1.056 | 1.444 |
| OCI | SVR | RFR | 1DCNN | 1DCNN\SVR | |
|---|---|---|---|---|---|
| Min | -12.804 | -5.747 | -5.092 | -5.429 | -4.651 |
| Max | 14.619 | 6.810 | 5.968 | 12.940 | 12.669 |
| Average | -1.416 | -0.296 | -0.130 | -0.154 | -0.190 |
| OCI | SVR | RFR | 1DCNN | 1DCNN\SVR | |
|---|---|---|---|---|---|
| Min | -11.695 | -2.096 | -4.446 | -3.254 | -2.667 |
| Max | 11.156 | 4.553 | 1.5071 | 8.611 | 8.173 |
| Average | -1.007 | -0.219 | -0.009 | -0.254 | -0.268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
