Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Synthetic Ultra-wideband Transceiver for Millimeter-wave Imaging Applications

Version 1 : Received: 10 September 2023 / Approved: 12 September 2023 / Online: 12 September 2023 (03:21:10 CEST)

A peer-reviewed article of this Preprint also exists.

Mirbeik, A.; Najafizadeh, L.; Ebadi, N. A Synthetic Ultra-Wideband Transceiver for Millimeter-Wave Imaging Applications. Micromachines 2023, 14, 2031. Mirbeik, A.; Najafizadeh, L.; Ebadi, N. A Synthetic Ultra-Wideband Transceiver for Millimeter-Wave Imaging Applications. Micromachines 2023, 14, 2031.

Abstract

In this work, we present a transceiver front-end in SiGe BiCMOS technology that can provide an ultra-wide bandwidth of 100 GHz at millimeter-wave frequencies. The front-end employs a novel configuration for low-loss distribution of broadband generated pulses as well as coherent spatial combining of received pulses. This leads to the realization of a fully integrated ultra-high-resolution imaging chip for biomedical applications. We realized an ultra-wide imaging bandwidth of 100 GHz by the integration of two adjacent, disjointed frequency sub-bands of 10–50 GHz and 50–110 GHz respectively. The transceiver front-end is capable of both transmit (TX) and receive (RX) operations. This is a key building-block for a scalable system in which a unit cell is repeated in the X and Y directions resulting in less power and area consumption. The imaging elements were designed and fabricated in Global Foundry 130-nm SiGe 8XP BiCMOS process technology.

Keywords

Millimeter-wave Imaging; Transceiver; Circuit; Biomedical imaging; ultra-wideband; CMOS

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.