Submitted:
01 September 2023
Posted:
06 September 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Flea families
1. Ancistropsyllidae
2. Ceratophyllidae
3. Chimaeropsyllidae
4. Coptopsyllidae
5. Hystrichopsyllidae
6. Ischnopsyllidae
7. Leptopsyllidae
8. Lycopsyllidae
9. Macropsyllidae
10. Malacopsyllidae
11. Pulicidae
12. Pygiopsyllidae
13. Rhopalopsyllidae
14. Stenoponiidae
15. Stephanocircidae
16. Stivaliidae
17. Tungidae
18. Vermipsyllidae
19. Xiphiopsyllidae
Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bernard, E.C.; Whittington, A.E. Papers and New Species of Minor Insect Orders Published in Zootaxa, 2001–2020. Zootaxa 2021, 4979, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Hastriter, M.W.; Bossard, R.L. Flea (Siphonaptera). In World Species List (spreadsheet). Lewis, R.E, 2018. Available online: https://esanetworks.org/groups/fleanews.
- Beaucournu, J.C.; Gomez-Lopez, M.S. Orden Siphonaptera. Revista Ibero Diversidad Entomológica @ccesible IDE@ - SEA, nº 61B 2015, pp. 1–10.
- Zhu, Q.; Hastriter, M.W.; Whiting, M.F.; Dittmar, K. Fleas (Siphonaptera) are Cretaceous, and evolved with Theria. Mol. Phylogenetics Evol. 2015, 90, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shih, C.; Rasnitsyn, A.; Ren, D.; Gao, T. A new flea from the Early Cretaceous of China. Acta Palaeontol. Pol. 2020, 65, 99–107. [Google Scholar] [CrossRef]
- Huang, D.; Nel, A.; Cai, C.; Lin, Q.; Engel, M.S. Amphibious flies and paedomorphism in the Jurassic period. Nature 2013, 495, 94–97. [Google Scholar] [CrossRef]
- Pielowska, A.; Sontag, E.; Szadziewski, R. Haematophagous Arthropods in Baltic Amber. Ann. Zoöl. 2018, 68, 237–249. [Google Scholar] [CrossRef]
- Whiting, M.F.; Whiting, A.S.; Hastriter, M.W.; Dittmar, K. A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. Cladistics 2008, 24, 677–707. [Google Scholar] [CrossRef]
- Tihelka, E.; Giacomelli, M.; Huang, D.-Y.; Pisani, D.; Donoghue, P.C.J.; Cai, C.-Y. Fleas are parasitic scorpionflies. Palaeoentomology 2020, 3, 641–653. [Google Scholar] [CrossRef]
- Meusemann, K.; Trautwein, M.; Friedrich, F.; Beutel, R.G.; Wiegmann, B.M.; Donath, A.; Podsiadlowski, L.; Petersen, M.; Niehuis, O.; Mayer, C.; et al. Are fleas highly modified Mecoptera? Phylogenomic resolution of Antliophora (Insecta: Holometabola). BioRxiv 2020, 11, 390666. [Google Scholar]
- Zhang, Y.; Fu, Y.-T.; Yao, C.; Deng, Y.-P.; Nie, Y.; Liu, G.-H. Mitochondrial phylogenomics provides insights into the taxonomy and phylogeny of fleas. Parasites Vectors 2022, 15, 223. [Google Scholar] [CrossRef]
- Holland, G.P. Evolution, Classification, and Host Relationships of Siphonaptera. Annu. Rev. Èntomol. 1964, 9, 123–146. [Google Scholar] [CrossRef]
- Medvedev, S.G. Classification of fleas (Order Siphonaptera) and its theoretical foundations. Entomol. Rev. 1998, 78, 1080–1093. [Google Scholar]
- Medvedev, S.G. Morphological diversity of the skeletal structures of fleas (Siphonaptera). Part 1: the general characteristic and features of the head. Èntomol. Rev. 2015, 95, 852–873. [Google Scholar] [CrossRef]
- Marshall, A.G. The ecology of ectoparasitic insects. Academic Press Inc. (London) Ltd. 1981, pp. 446.
- Rothschild, M. Recent Advances in Our Knowledge of the Order Siphonaptera. Annu. Rev. Èntomol. 1975, 20, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, M.; Schlein, Y.; Ito, S. A Colour Atlas of Insect Tissues via the Flea. Wolfe Pub. London, 1986, pp. 184.
- Elbel, R.E. Siphonaptera. In Immature Insects. Stehr, F.W.; Kendall/Hunt Publ., Dubuque, Iowa. 1991, 2 (36), pp. 674-89.
- Linley, J.R.; Benton, A.H.; Day, J.F. Ultrastructure of the Eggs of Seven Flea Species (Siphonaptera). J. Med Èntomol. 1994, 31, 813–827. [Google Scholar] [CrossRef]
- Pilgrim, R.L.C. External Morphology of Flea Larvae (Siphonaptera) and Its Significance in Taxonomy. Fla. Èntomol. 1991, 74, 386–395. [Google Scholar] [CrossRef]
- Krasnov, B.R. Functional and Evolutionary Ecology of Fleas. Cambridge University Press, New York 2008, pp. 593.
- Heeb, P.; Kolliker, M.; Richner, H. Bird-ectoparasite interactions, nest humidity, and ectoparasite community structure. Ecology 2000, 81, 958–968. [Google Scholar]
- Eads, D.A.; Biggins, D.E. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America. Conserv. Biol. 2015, 29, 1086–1093. [Google Scholar] [CrossRef]
- Zwolak, R.; Meagher, S.; Vaughn, J.W.; Dziemian, S.; Crone, E.E. Reduced ectoparasite loads of deer mice in burned forest: From fleas to trees? Ecosphere 2013, 4, 1–10. [Google Scholar] [CrossRef]
- Rousseau, J.; Castro, A.; Novo, T.; Maia, C. Dipylidium caninum in the twenty-first century: epidemiological studies and reported cases in companion animals and humans. Parasites Vectors 2022, 15, 131. [Google Scholar] [CrossRef]
- Cooke, B.D. Fifty-year review: European rabbit fleas, Spilopsyllus cuniculi (Dale, 1878) (Siphonaptera: Pulicidae), enhanced the efficacy of myxomatosis for controlling Australian rabbits. Wildl. Res. 2022, 50, 4–15. [Google Scholar] [CrossRef]
- Durden, L.A.; Hinkle, N.C. Fleas (Siphonaptera). In Medical and Veterinary Entomology, 3ed.; Academic Press., London, 2019, pp. 145-169.
- Medvedev, S.G. Specific features of the distribution and host associations of fleas (Siphonaptera). Entomol. Rev. 2002, 82, 1165–1177. [Google Scholar]
- Linardi, P.M.; Santos, J.L.C. Ctenocephalides felis felis vs. Ctenocephalides canis (Siphonaptera: Pulicidae): some issues in correctly identifying these species. Rev. Bras. Parasitol. Vet. 2012, 21, pp. 345–354. [Google Scholar] [CrossRef]
- Diamond, J.M. Colonization of Exploded Volcanic Islands by Birds: The Supertramp Strategy. Science 1974, 184, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.O. The Nature of the Taxon Cycle in the Melanesian Ant Fauna. Am. Nat. 1961, 95, 169–193. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Bermingham, E. The concept of the taxon cycle in biogeography. Glob. Ecol. Biogeogr. 2002, 11, 353–361. [Google Scholar] [CrossRef]
- Hopkins, G.H.E.; Rothschild, M. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Nat. Hist.). Vol. V. Leptopsyllidae and Ancistropsyllidae. Cambridge Univ. Press, Cambridge, UK 1971.
- Mennecart, B.; Wazir, W.A.; Sehgal, R.K.; Patnaik, R.; Singh, N.P.; Kumar, N.; Nanda, A.C. New remains of Nalamaeryx (Tragulidae, Mammalia) from the Ladakh Himalaya and their phylogenetical and palaeoenvironmental implications. Hist. Biol. 2022, 34, 2295–2303. [Google Scholar] [CrossRef]
- Nguyen, A.; Hoang, D.M.; Nguyen, T.A.M.; Nguyen, D.T.; Tran, V.T.; Long, B.; Meijaard, E.; Holland, J.; Wilting, A.; Tilker, A. Camera-trap evidence that the silver-backed chevrotain Tragulus versicolor remains in the wild in Vietnam. Nat. Ecol. Evol. 2019, 3, 1650–1654. [Google Scholar] [CrossRef]
- Traub, R.; Rothschild, M.; Haddow, J.F. The Rothschild collection of fleas. The Ceratophyllidae: key to the genera and host relationships. Academic Press, New York 1983.
- Whitehead, M.D.; Burton, H.R.; Bell, P.J.; Arnould, J.P.Y.; Rounsevell, D.E. A further contribution on the biology of the Antarctic flea, Glaciopsyllus antarcticus (Siphonaptera: Ceratophyllidae). Polar Biol. 1991, 11, 379–383. [Google Scholar] [CrossRef]
- Uhart, M.M.; Gallo, L.; Quintana, F. Review of diseases (pathogen isolation, direct recovery and antibodies) in albatrosses and large petrels worldwide. Bird Conserv. Int. 2018, 28, 169–196. [Google Scholar] [CrossRef]
- Vanstreels, R.E.T.; Palma, R.L.; Mironov, S.V. Arthropod parasites of Antarctic and Subantarctic birds and pinnipeds: A review of host-parasite associations. Int. J. Parasitol. Parasites Wildl. 2020, 12, 275–290. [Google Scholar] [CrossRef]
- Krasnov, B.R.; Shenbrot, G.I.; Khokhlova, I.S. Historical biogeography of fleas: the former Bering Land Bridge and phylogenetic dissimilarity between the Nearctic and Palearctic assemblages. Parasitol. Res. 2015, 114, 1677–1686. [Google Scholar] [CrossRef] [PubMed]
- Schelhaas, D.P.; Larson, O.R. Cold hardiness and winter survival in the bird flea, Ceratophyllus idius. J. Insect Physiol. 1989, 35, 149–153. [Google Scholar] [CrossRef]
- Bossard, R.L. Thermal niche partitioning and phenology of Nearctic and Palearctic flea (Siphonaptera) communities on rodents (Mammalia: Rodentia) from five ecoregions. J. Vector Ecol. 2022, 47, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, S.G. Geographical distribution of families of fleas (Siphonaptera). Entomol. Rev. 1996, 76, 978–992. [Google Scholar]
- Zurita, A.; Callejón, R.; de Rojas, M.; Cutillas, C. Morphological and molecular study of the genus Nosopsyllus (Siphonaptera: Ceratophyllidae). Nosopsyllus barbarus (Jordan & Rothschild 1912) as a junior synonym of Nosopsyllus fasciatus (Bosc, d’Antic 1800). Insect Syst. Evol. 2018, 49, 81–101. [Google Scholar]
- Appelgren, A.S.C.; Saladin, V.; Richner, H.; Doligez, B.; McCoy, K.D. Gene flow and adaptive potential in a generalist ectoparasite. BMC Evol. Biol. 2018, 18, 99. [Google Scholar] [CrossRef]
- Gaponov, S.P.; Tehuelde, R.T. Fleas Siphonaptera in bird nests in Voronezh urban systems. Russian J. Ornithol. 2022, 31, 3196–3199. [Google Scholar]
- Pawełczyk, O.; Postawa, T.; Blaski, M.; Solarz, K. Morphology Reveals the Unexpected Cryptic Diversity in Ceratophyllus gallinae (Schrank, 1803) Infested Cyanistes caeruleus Linnaeus, 1758 Nest Boxes. Acta Parasitol. 2020, 65, 874–881. [Google Scholar] [CrossRef]
- Kwak, M.L.; Heath, A.C.G.; Palma, R.L. Saving the Manx Shearwater Flea Ceratophyllus (Emmareus) fionnus (Insecta: Siphonaptera): The Road to Developing a Recovery Plan for a Threatened Ectoparasite. Acta Parasitol. 2019, 64, 903–910. [Google Scholar] [CrossRef]
- Kwak, M.L.; Heath, A.C.G.; Palma, R.L. Correction to: Saving the Manx Shearwater Flea Ceratophyllus (Emmareus) fionnus (Insecta: Siphonaptera): The Road to Developing a Recovery Plan for a Threatened Ectoparasite. Acta Parasitol. 2019, 64, 957–958. [Google Scholar] [CrossRef]
- Hopkins, G.H.E.; Rothschild, M. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Nat. Hist.). Vol. II. Coptopsyllidae, Vermipsyllidae, Stephanocircidae, Ischnopsyllidae, Hypsophthalmidae and Xiphiopsyllidae. Cambridge Univ. Press, Cambridge, UK 1956.
- Launay, H.; Beaucournu, J. Coptopsyllidae (Siphonaptera) Africaines: Reparition, morphologie, statut taxonomique et relations phyletiques avec les autres representants de la famille. Parasite 1987, 62, 159–173. [Google Scholar] [CrossRef]
- Maleki-Ravasan, N.; Solhjouy-Fard, S.; Beaucournu, J.-C.; Laudisoit, A.; Mostafavi, E. The Fleas (Siphonaptera) in Iran: Diversity, Host Range, and Medical Importance. PLOS Neglected Trop. Dis. 2017, 11, e0005260. [Google Scholar] [CrossRef]
- Koshel, E.I.; Aleshin, V.V.; Eroshenko, G.A.; Kutyrev, V.V. Phylogenetic Analysis of Entomoparasitic Nematodes, Potential Control Agents of Flea Populations in Natural Foci of Plague. BioMed Res. Int. 2014, 2014, 135218. [Google Scholar] [CrossRef]
- Beaucournu, J.C.; Launay, H.; Sklair, A. Les anomalies des spermathèques et des conduits génitaux chez les Siphonaptères (Insecta): Revue bibliographique et cas personnels. Ann. Parasitol. Hum. Comp. 1988, 63, 64–75. [Google Scholar] [CrossRef]
- Barnes, A.M.; Tipton, V.J.; Wildie, J.A. The subfamily Anomiopsyllinae (Hystrichopsyllidae: Siphonaptera). I. A revision of the genus Anomiopsyllus Baker. Great Basin Nat. 1977, 37, 138–206. [Google Scholar] [CrossRef]
- Medvedev, S.G. Adaptations of fleas (Siphonaptera) to parasitism. Èntomol. Rev. 2017, 97, 1023–1030. [Google Scholar] [CrossRef]
- Hopkins, G.H.E.; Rothschild, M. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Nat. Hist.). Vol. III. Hystrichopsyllidae. Cambridge Univ. Press, Cambridge, UK 1962.
- Hopkins, G.H.E.; Rothschild, M. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Nat. Hist.). Vol. IV. Hystrichopsyllidae (Ctenophthalminae, Dinopsyllinae, Doratopsyllinae and Listroopsyllinae). Cambridge Univ. Press, Cambridge, UK 1966.
- Tulis, F.; Ševčík, M.; Jánošíková, R.; Baláž, I.; Ambros, M.; Zvaríková, L.; Horváth, G. The impact of the striped field mouse’s range expansion on communities of native small mammals. Sci. Rep. 2023, 13, 753. [Google Scholar] [CrossRef] [PubMed]
- Elbel, R.E.; Bossard, R.L. Observations and larval descriptions of fleas (Siphonaptera: Ceratophyllidae, Ctenophthalmidae, Ishnopsyllidae) of the southern flying squirrel, little brown bat, and Brazilian free-tailed bat (Mammalia: Rodentia, Chiroptera). J. Med. Entomol. 2007, 44, pp. 915–922. [Google Scholar] [CrossRef]
- Bossard, R.L. MAMMAL AND FLEA RELATIONSHIPS IN THE GREAT BASIN DESERT: FROM H. J. EGOSCUE'S COLLECTIONS. J. Parasitol. 2006, 92, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Hastriter, M.W.; Miller, K.B.; Svenson, G.J.; Martin, G.J.; Whiting, M. New record of a phoretic flea associated with earwigs (Dermaptera, Arixeniidae) and a redescription of the bat flea Lagaropsylla signata (Siphonaptera, Ischnopsyllidae). ZooKeys 2017, 657, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Szentiványi, T.; Markotter, W.; Dietrich, M.; Clément, L.; Ançay, L.; Brun, L.; Genzoni, E.; Kearney, T.; Seamark, E.; Estók, P.; et al. Host conservation through their parasites: molecular surveillance of vector-borne microorganisms in bats using ectoparasitic bat flies. Parasite 2020, 27, 72. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.E. Résumé of the Siphonaptera (Insecta) of the world. J. Med Èntomol. 1998, 35, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Zurita, A.; Rivero, J.; García-Sánchez, Á.M.; Callejón, R.; Cutillas, C. Morphological, molecular and phylogenetic characterization of Leptopsylla segnis and Leptopsylla taschenbergi (Siphonaptera). Zool. Scr. 2022, 51, 741–754. [Google Scholar] [CrossRef]
- Guernier, V.; Lagadec, E.; LeMinter, G.; Licciardi, S.; Balleydier, E.; Pagès, F.; Laudisoit, A.; Dellagi, K.; Tortosa, P. Fleas of Small Mammals on Reunion Island: Diversity, Distribution and Epidemiological Consequences. PLOS Neglected Trop. Dis. 2014, 8, e3129. [Google Scholar] [CrossRef] [PubMed]
- Williams, B. Mandibular glands in the endoparasitic larva of Uropsylla tasmanica Rothschild (Siphonaptera : Pygiopsyllidae). Int. J. Insect Morphol. Embryol. 1986, 15, 263–268. [Google Scholar] [CrossRef]
- Williams, B. Adaptations to Endoparasitism in the Larval Integument and Respiratory System of the Flea Uropsylla-Tasmanica Rothschild (Siphonaptera, Pygiopsyllidae). Aust. J. Zoöl. 1991, 39, 77–90. [Google Scholar] [CrossRef]
- Medvedev, S.G. Morphological diversity of the skeletal structures of fleas (Siphonaptera). Part 2: The general characteristic and features of the thorax. Èntomol. Rev. 2016, 96, 28–50. [Google Scholar] [CrossRef]
- Hastriter, M.W. Description ofWilsonipsylla spinicoxa, New Genus and Species of Flea from Papua New Guinea and Review of the Suborder Pygiopsyllomorpha (Insecta: Siphonaptera). Ann. Carnegie Mus. 2012, 81, 19–32. [Google Scholar] [CrossRef]
- Steventon, C.; Harley, D.; Wicker, L.; Legione, A.R.; Devlin, J.M.; Hufschmid, J. An assessment of ectoparasites across highland and lowland populations of Leadbeater's possum (Gymnobelideus leadbeateri): Implications for genetic rescue translocations. Int. J. Parasitol. Parasites Wildl. 2022, 18, 152–156. [Google Scholar] [CrossRef]
- Wait, L.F.; Peck, S.; Fox, S.; Power, M.L. A review of parasites in the Tasmanian devil (Sarcophilus harrisii). Biodivers. Conserv. 2017, 26, 509–526. [Google Scholar] [CrossRef]
- Kwak, M.L.; Hastriter, M.W. The Australian giant fleas Macropsylla Rothschild, 1905 (Siphonaptera: Macropsyllidae: Macropsyllinae), their identification, evolution, ecology, and conservation biology. Syst. Parasitol. 2020, 97, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.L. Australia’s vanishing fleas (Insecta: Siphonaptera): a case study in methods for the assessment and conservation of threatened flea species. J. Insect Conserv. 2018, 22, 545–550. [Google Scholar] [CrossRef]
- Lareschi, M.; Sanchez, J.; Autino, A. A review of the fleas (Insecta: Siphonaptera) from Argentina. Zootaxa 2016, 4103, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Ezquiaga, M.C.; Lareschi, M. Surface Ultrastructure of the Eggs of Malacopsylla grossiventris and Phthiropsylla agenoris (Siphonaptera: Malacopsyllidae). J. Parasitol. 2012, 98, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- Linardi, P.M.; Beaucournu, J.C.; de Avelar, D.M.; Belaz, S. Notes on the genus Tunga (Siphonaptera: Tungidae) II – neosomes, morphology, classification, and other taxonomic notes. Parasite 2014, 21, 68. [Google Scholar] [CrossRef] [PubMed]
- Smit, F.G.A.M. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Nat. Hist.). Vol. VII. Malacopsylloidea. Oxford Univ. Press, Oxford, UK 1987.
- Zurita, A.; Lareschi, M.; Cutillas, C. New insights into the taxonomy of Malacopsylloidea superfamily (Siphonaptera) based on morphological, molecular and phylogenetic characterization of Phthiropsylla agenoris (Malacopsyllidae) and Polygenis (Polygenis) rimatus (Rhopalopsyllidae). Diversity 2023, 15, 308. [Google Scholar] [CrossRef]
- Zurita, A.; Callejón, R.; de Rojas, M.; Cutillas, C. Morphological, biometrical and molecular characterization of Archaeopsylla erinacei (Bouché, 1835). Bull. Entomol. Res. 2018, 108, 726–738. [Google Scholar] [CrossRef]
- Hopkins, G.H.E.; Rothschild, M. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Nat. Hist.). Vol. I. Tungidae and Pulicidae. Cambridge Univ. Press, Cambridge, UK 1953.
- Linardi, P.M.; De Avelar, D.M.; Filho, E.J.F. Establishment of Tunga trimamillata (Siphonaptera: Tungidae) in Brazil. Parasitol. Res. 2013, 112, 3239–3242. [Google Scholar] [CrossRef]
- Clark, N.J.; Seddon, J.M.; Šlapeta, J.; Wells, K. Parasite spread at the domestic animal - wildlife interface: anthropogenic habitat use, phylogeny and body mass drive risk of cat and dog flea (Ctenocephalides spp.) infestation in wild mammals. Parasites Vectors 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Crkvencic, N.; Šlapeta, J. Climate change models predict southerly shift of the cat flea (Ctenocephalides felis) distribution in Australia. Parasites Vectors 2019, 12, 1–14. [Google Scholar] [CrossRef]
- Hornok, S.; Beck, R.; Farkas, R.; Grima, A.; Otranto, D.; Kontschán, J.; Takács, N.; Horváth, G.; Szőke, K.; Szekeres, S.; et al. High mitochondrial sequence divergence in synanthropic flea species (Insecta: Siphonaptera) from Europe and the Mediterranean. Parasit Vectors. 2018, 11, 221. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, A.L.; Brown, G.K.; Peters, B.; Spielman, D.S.; Morin-Adeline, V.; Šlapeta, J. High phylogenetic diversity of the cat flea (Ctenocephalides felis) at two mitochondrial DNA markers. Med Veter- Èntomol. 2014, 28, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, A.L.; Webb, C.E.; Clark, N.J.; Halajian, A.; Mihalca, A.D.; Miret, J.; et al. Out-of-Africa, human-mediated dispersal of the common cat flea, Ctenocephalides felis: The hitchhiker’s guide to world domination. Int. J. Parasit. 2019, 49, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Azrizal-Wahid, N.; Sofian-Azirun, M.; Low, V.L. New insights into the haplotype diversity of the cosmopolitan cat flea Ctenocephalides felis (Siphonaptera: Pulicidae). Veter- Parasitol. 2020, 281, 109102. [Google Scholar] [CrossRef]
- Driscoll, T.P.; Verhoeve, V.I.; Gillespie, J.J.; Johnston, J.S.; Guillotte, M.L.; Rennoll-Bankert, K.E.; Rahman, M.S.; Hagen, D.; Elsik, C.G.; Macaluso, K.R.; et al. A chromosome-level assembly of the cat flea genome uncovers rampant gene duplication and genome size plasticity. BMC Biol. 2020, 18, 1–19. [Google Scholar] [CrossRef]
- van der Mescht, L.; Matthee, S.; Matthee, C.A. New taxonomic and evolutionary insights relevant to the cat flea, Ctenocephalides felis: A geographic perspective. Mol. Phylogenetics Evol. 2021, 155, 106990. [Google Scholar] [CrossRef]
- Zhang, Y.; Nie, Y.; Deng, Y.-P.; Liu, G.-H.; Fu, Y.-T. The complete mitochondrial genome sequences of the cat flea Ctenocephalides felis felis (Siphonaptera: Pulicidae) support the hypothesis that C. felis isolates from China and USA were the same C. f. felis subspecies. Acta Trop. 2021, 217, 105880. [Google Scholar] [CrossRef]
- Feyereisen, R. The P450 genes of the cat flea, Ctenocephalides felis: a CYPome in flux. Curr. Res. Insect Sci. 2022, 2, 100032. [Google Scholar] [CrossRef]
- García-Sánchez, A.M.; Zurita, A.; Cutillas, C. Morphometrics as a Complementary Tool in the Differentiation of Two Cosmopolitan Flea Species: Ctenocephalides felis and Ctenocephalides canis. Insects 2022, 13, 707. [Google Scholar] [CrossRef]
- Zhang, Y.; Nie, Y.; Li, L.-Y.; Chen, S.-Y.; Liu, G.-H.; Liu, W. Population genetics and genetic variation of Ctenocephalides felis and Pulex irritans in China by analysis of nuclear and mitochondrial genes. Parasites Vectors 2022, 15, 1–13. [Google Scholar] [CrossRef]
- Lawrence, A.L.; Hii, S.-F.; Jirsová, D.; Panáková, L.; Ionică, A.M.; Gilchrist, K.; Modrý, D.; Mihalca, A.D.; Webb, C.E.; Traub, R.J.; et al. Integrated morphological and molecular identification of cat fleas (Ctenocephalides felis) and dog fleas (Ctenocephalides canis) vectoring Rickettsia felis in central Europe. Veter- Parasitol. 2015, 210, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Boughton, R.K.; Atwell, J.W.; Schoech, S.J. AN INTRODUCED GENERALIST PARASITE, THE STICKTIGHT FLEA (ECHIDNOPHAGA GALLINACEA), AND ITS PATHOLOGY IN THE THREATENED FLORIDA SCRUB-JAY (APHELOCOMA COERULESCENS). J. Parasitol. 2006, 92, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Buckland, P.C.; Sadler, J.P. A Biogeography of the Human Flea, Pulex irritans L. (Siphonaptera: Pulicidae). J. Biogeogr. 1989, 16, 115–120. [Google Scholar] [CrossRef]
- Lareschi, M.; Venzal, J.M.; Nava, S.; Mangold, A.J.; Portillo, A.; Palomar Urbina, A.M.; Oteo Revuelta, J.A. The human flea Pulex irritans Linnaeus, 1758 (Siphonaptera: Pulicidae) and an investigation of Bartonella and Rickettsia in northwestern Argentina. Rev. Mex. Biodivers. 2018, 89, 375–381. [Google Scholar]
- Zurita, A.; Callejón, R.; Urdapilleta, M.; Lareschi, M.; Cutillas, C. Origin, evolution, phylogeny and taxonomy of Pulex irritans (Siphonaptera: Pulicidae). Med. Vet. Entomol. 2019, 33, pp. 296–311. [Google Scholar] [CrossRef]
- Wei, F.; Jia, X.; Wang, Y.; Yang, Y.; Wang, J.; Gao, C.; Wang, Y. The complete mitochondrial genome of Xenopsylla cheopis (Siphonaptera: Pulicidae). Mitochondrial DNA Part B 2022, 7, 170–171. [Google Scholar] [CrossRef]
- Boyer, S.; Gillespie, T.R.; Miarinjara, A. Xenopsylla cheopis (rat flea). Trends Parasitol. 2022, 38, 607–608. [Google Scholar] [CrossRef]
- Dean, K.R.; Krauer, F.; Walløe, L.; Lingjærde, O.C.; Bramanti, B.; Stenseth, N.C.; Schmid, B.V. Human ectoparasites and spread of plague in Europe. Proc. Natl. Acad. Sci. 2018, 115, 1304–1309. [Google Scholar] [CrossRef]
- Bitam, I.; Dittmar, K.; Parola, P.; Whiting, M.F.; Raoult, D. Fleas and flea-borne diseases. Int. J. Infect. Dis. 2010, 14, e667–e676. [Google Scholar] [CrossRef]
- Mardon, D.K. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Nat. Hist.). Vol. VI. Pygiopsyllidae. Cambridge University Press, Cambridge, UK 1981.
- Baker, R.T.; Beveridge, I. IMIDACLOPRID TREATMENT OF MARSUPIALS FOR FLEAS (PYGIOPSYLLA HOPLIA). J. Zoo Wildl. Med. 2001, 32, 391–392. [Google Scholar] [CrossRef]
- Durden, L.; Beaucournu, J. Gymnomeropsylla n. gen. (Siphonaptera: Pygiopsyllidae) from Sulawesi, Indonesia, with the description of two new species. Parasite 2002, 9, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Durden, L.; Beaucournu, J. Three new fleas from Sulawesi, Indonesia (Siphonaptera: Pygiopsyllidae & Ceratophyllidae). Parasite 2006, 13, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Beaucournu, J.C.; Wells, K. Three new species of the genus Medwayella Traub, 1972 (Insecta: Siphonaptera: Pygiopsyllidae) from Sabah (eastern Malaysia, Borneo). Parasite 2004, 4, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Berrizbeitia, M.F.; Hastriter, M.W.; Barquez, R.M.; Diaz, M.M. A new flea of the genus Ctenidiosomus (Siphonaptera, Pygiopsyllidae) from Salta Province, Argentina. ZooKeys 2015, 512, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Hastriter, M.W. Fleas (Siphonaptera: Pygiopsyllomorpha) of Papua New Guinea and Papua Province (Indonesia). Part VI. Bibikovana, geohollandia, and Hoogstraalia (Pygiopsyllidae: Pygiopsyllinae), with Descriptions of Four New Species. Ann. Carnegie Mus. 2021, 87, 37–77. [Google Scholar] [CrossRef]
- Hastriter, M.W. Records of Fleas (Siphonaptera) from Australia, Malaysia, and Papua New Guinea with the Description of a New Species of Bibikovana Traub, 1980 (Pygiopsyllidae). Ann. Carnegie Mus. 2021, 87, 117–137. [Google Scholar] [CrossRef]
- Kwak, M.L.; Madden, C.; Wicker, L. The first record of the native flea Acanthopsylla Rainbow, 1905 (Siphonaptera: Pygiopsyllidae) from the endangered Tasmanian devil (Sarcophilus harrisii, 1841), with a review of the fleas associated with the Tasmanian devil. Aust. J. Entomol. 2017, 44, pp–293. [Google Scholar]
- Urdapilleta, M.; Lamattina, D.; Burgos, E.F.; Salomón, O.D.; Lareschi, M. Specificity of fleas associated with opposums in a landscape gradient in the Paranaense Rainforest Ecoregion. Zootaxa 2023, 5264, 579–586. [Google Scholar] [CrossRef]
- Mazzamuto, M.V.; Pisanu, B.; Romeo, C.; Ferrari, N.; Preatoni, D.; Wauters, L.A.; Chapuis, J.L.; Martinoli, A. Poor parasite community of an invasive alien species: Macroparasites of Pallas’s squirrel in Italy. Ann. Zool. Fenn. 2016, 53, 103–112. [Google Scholar] [CrossRef]
- Gozzi, A.C.; Lareschi, M.; Navone, G.T.; Guichón, M.L. The enemy release hypothesis and Callosciurus erythraeus in Argentina: combining community and biogeographical parasitological studies. Biol. Invasions 2020, 22, 3519–3531. [Google Scholar] [CrossRef]
- Zurita, A.; Callejón, R.; De Rojas, M.; López, M.G.; Cutillas, C. Molecular study of Stenoponia tripectinata tripectinata (Siphonaptera: Ctenophthalmidae: Stenoponiinae) from the Canary Islands: taxonomy and phylogeny. Bull. Èntomol. Res. 2015, 104, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Zurita, A.; García-Sánchez. M.; Cutillas, C. Comparative molecular and morphological study of Stenoponia tripectinata tripectinata (Siphonaptera: Stenoponiidae) from the Canary Islands and Corsica. Bull. Èntomol. Res. 2022, 112, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, S.G. The Palaearctic centers of taxonomic diversity of fleas (Siphonaptera). Èntomol. Rev. 2014, 94, 345–358. [Google Scholar] [CrossRef]
- Krasnov, B.R.; Burdelova, N.V.; Shenbrot, G.I.; Khokhlova, I.S. Annual cycles of four flea species in the central Negev desert. Med Veter- Èntomol. 2002, 16, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Smit, F.G.A.M. The male of Stephanopsylla thomasi (Siphonaptera: Macropsyllidae). Entomol. Ber. 1973, 33, 215–217. [Google Scholar]
- Traub, R. Smitella thambetosa, n. gen. and n. sp., a remarkable “helmeted flea” from New Guinea (Siphonaptera, Pygiopsyllidae) with notes on convergent evolution. J. Med. Entomol. 1968, 5, 375–404. [Google Scholar] [CrossRef]
- Traub, R. The zoogeography of fleas (Siphonaptera) as supporting the theory of continental drift. J. med. Ent. 1972, 9, 584–589. [Google Scholar]
- Beaucournu, J.-C.; Moreno, L.; González-Acuña, D. Fleas (Insecta-Siphonaptera) of Chile: a review. Zootaxa 2014, 3900, 151–203. [Google Scholar] [CrossRef]
- López-Berrizbeitia, M.F.; Acosta-Gutiérrez, R.; Díaz, M.M. Fleas of mammals and patterns of distributional congruence in northwestern Argentina: A preliminary biogeographic analysis. Heliyon 2020, 6. [Google Scholar] [CrossRef]
- Hastriter, M.; Bush, S.E. Description of Medwayella independencia (Siphonaptera, Stivaliidae), a new species of flea from Mindanao Island, the Philippines and their phoretic mites, and miscellaneous flea records from the Malay Archipelago. ZooKeys 2014, 408, 107–123. [Google Scholar] [CrossRef]
- Mardon, D.K.; Durden, L.A. Musserellusgen. nov., and Five New Species of Fleas (Siphonaptera: Stivaliidae) From Murid Rodents in Sulawesi and West Papua, Indonesia. J. Med Èntomol. 2016, 53, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Holland, G.P. CONTRIBUTION TOWARDS A MONOGRAPH OF THE FLEAS OF NEW GUINEA. Memoirs Èntomol. Soc. Can. 1969, 61, 1–71. [Google Scholar] [CrossRef]
- Beaucournu, J.C.; Degeilh, B.; Mergey, T.; Muñoz-Leal, S.; González-Acuña, D. Le genre Tunga Jarocki, 1838 (Siphonaptera: Tungidae). I - Taxonomie, phylogenie, ecologie, role pathogene. Parasite 2012, 19, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Ezquiaga, M.C.; Linardi, P.M.; De Avelar, D.M.; Lareschi, M. A new species of Tunga perforating the osteoderms of its armadillo host in Argentina and redescription of the male of Tunga terasma. Med. Vet. Entomol. 2015, 29, 196–204. [Google Scholar] [CrossRef] [PubMed]
- De Lima, F.C.G.; De Oliveira Porpino, K. Ectoparasitism and infections in the exoskeletons of large fossil cingulates. PLoS ONE 2018, 13, e0205656. [Google Scholar] [CrossRef] [PubMed]
- Tomassini, R.L.; Montalvo, C.I.; Ezquiaga, M.C. The oldest record of flea/armadillos interaction as example of bioerosion on osteoderms from the late Miocene of the Argentine Pampas. Int. J. Paleopathol. 2016, 15, 65–68. [Google Scholar] [CrossRef]
- Moura, J.F.; Nascimento, C.S.I.; Peixoto, B.d.C.e.M.; de Barros, G.E.; Robbi, B.; Fernandes, M.A. Damaged armour: Ichnotaxonomy and paleoparasitology of bioerosion lesions in osteoderms of Quaternary extinct armadillos. J. South Am. Earth Sci. 2021, 109, 103255. [Google Scholar] [CrossRef]
- Nascimento, C.S.I.; Moura, J.F.; Robbi, B.; Fernandes, M.A. Lesions in osteoderms of pampatheres (Mammalia, Xenarthra, Cingulata) possibly caused by fleas. Acta Trop. 2020, 211, 105614. [Google Scholar] [CrossRef]
- Ramírez-Chaves, H.E.; Tamayo-Zuluaga, A.F.; Henao-Osorio, J.J.; Cardona-Giraldo, A.; Ossa-López, P.A.; Rivera-Páez, F.A. The chiggerflea Hectopsylla pulex (Siphonaptera: Tungidae): infestation on Molossus molossus (Chiroptera: Molossidae) in the Central Andes of Colombia. Zoöl. 2020, 37, 1–5. [Google Scholar] [CrossRef]
- Feldmeier, H.; Heukelbach, J.; Ugbomoiko, U.S.; Sentongo, E.; Mbabazi, P.; Von Samson-Himmelstjerna, G.; Krantz, I. ; The International Expert Group for Tungiasis Tungiasis—A Neglected Disease with Many Challenges for Global Public Health. PLOS Neglected Trop. Dis. 2014, 8, e3133. [Google Scholar] [CrossRef]
- Deka, M.A.; Heukelbach, J. Distribution of tungiasis in latin America: Identification of areas for potential disease transmission using an ecological niche model. Lancet Reg. Heal. - Am. 2022, 5, 100080. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, K.C.; Brandão Guedes, P.E.; Teixeira, J.B.d.C.; Harvey, T.V.; Carlos, R.S.A. Treatment of animal tungiasis: What’s new? Trop. Med. Infect. Dis. 2023, 8, 142. [Google Scholar] [CrossRef] [PubMed]
- Oliver, G.V.; Eckerlin, R.P. Fleas (Siphonaptera) From the Puma, Puma concolor (Carnivora: Felidae), A Rangewide Review and New Records from Utah and Texas, USA. J. Med Èntomol. 2022, 59, 2045–2052. [Google Scholar] [CrossRef]
- Harmsen, R.; Jabbal, I. Distribution and host-specificity of a number of fleas collected in south and central Kenya. J. East Afr. Nat. Hist. 1968, 117, 157–167. [Google Scholar]
- Milishnikov, A.N.; A Lavrenchenko, L.; Aniskin, V.M.; A Varshavskiĭ, A. [Analysis of allozyme variability in populations of three species of brush-haired mice of species Lophuromys (Rodentia, Muridae) from the Bale Mountains National Park in Ethiopia]. Genetika 2000, 36, 1697–1706. [Google Scholar] [PubMed]
- Verheyen, E.; Lavrenchenko, L.; Dando, T. Lophuromys brevicaudus. IUCN Red List of Threatened Species 2020 e.T45058A22407828. IUCN Red List of Threatened Species 2020 e.T45058A2240.
- Stephens, P.R.; Altizer, S.; Smith, K.F.; Aguirre, A.A.; Brown, J.H.; Budischak, S.A.; Byers, J.E.; Dallas, T.A.; Davies, T.J.; Drake, J.M.; et al. The macroecology of infectious diseases: a new perspective on global-scale drivers of pathogen distributions and impacts. Ecol. Lett. 2016, 19, 1159–1171. [Google Scholar] [CrossRef] [PubMed]
- Plowright, R.K.; Parrish, C.R.; McCallum, H.; Hudson, P.J.; Ko, A.I.; Graham, A.L.; Lloyd-Smith, J.O. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef] [PubMed]
- A Durden, L.; Bermúdez, S.; A Vargas, G.; E Sanjur, B.; Gillen, L.; Brown, L.D.; E Greiman, S.; E Eremeeva, M. Fleas (Siphonaptera) Parasitizing Peridomestic and Indigenous Mammals in Panamá and Screening of Selected Fleas for Vector-Borne Bacterial Pathogens. J. Med Èntomol. 2021, 58, 1316–1321. [Google Scholar] [CrossRef]
- Lefèvre, T.; Sauvion, N.; Almeida, R.P.; Fournet, F.; Alout, H. The ecological significance of arthropod vectors of plant, animal, and human pathogens. Trends Parasitol. 2022, 38, 404–418. [Google Scholar] [CrossRef]
- Zurita, A.; Benkacimi, L.; El Karkouri, K.; Cutillas, C.; Parola, P.; Laroche, M. New records of bacteria in different species of fleas from France and Spain. Comp. Immunol. Microbiol. Infect. Dis. 2021, 76, 101648. [Google Scholar] [CrossRef]
- Graham, C.B.; Eisen, R.J.; Belthoff, J.R. Detecting Burrowing Owl Bloodmeals in Pulex irritans (Siphonaptera: Pulicidae). J. Med Èntomol. 2016, 53, 446–50. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.R.; Conway, C.J.; Biggins, D.E. Flea sharing among sympatric rodent hosts: implications for potential plague effects on a threatened sciurid. Ecosphere 2020, 11. [Google Scholar] [CrossRef]
- Elzinga, D.C.; Stowe, S.R.; Russell, F.L. Modeling control methods to manage the sylvatic plague in black-tailed prairie dog towns. Nat. Resour. Model. 2020, 33. [Google Scholar] [CrossRef]
- Espinaze, M.P.A.; Hui, C.; Waller, L.; Matthee, S. Nest-type associated microclimatic conditions as potential drivers of ectoparasite infestations in African penguin nests. Parasitol. Res. 2020, 119, 3603–3616. [Google Scholar] [CrossRef]
- Liccioli, S.; Stephens, T.; Wilson, S.C.; McPherson, J.M.; Keating, L.M.; Antonation, K.S.; Bollinger, T.K.; Corbett, C.R.; Gummer, D.L.; Lindsay, L.R.; et al. Enzootic maintenance of sylvatic plague in Canada's threatened black-tailed prairie dog ecosystem. Ecosphere 2020, 11. [Google Scholar] [CrossRef]
- Portas, T.J.; Evans, M.J.; Spratt, D.; Vaz, P.K.; Devlin, J.M.; Barbosa, A.D.; Wilson, B.A.; Rypalski, A.; Wimpenny, C.; Fletcher, D.; et al. BASELINE HEALTH AND DISEASE ASSESSMENT OF FOUNDER EASTERN QUOLLS (DASYURUS VIVERRINUS) DURING A CONSERVATION TRANSLOCATION TO MAINLAND AUSTRALIA. J. Wildl. Dis. 2020, 56, 547. [Google Scholar] [CrossRef]
- Livieri, T.M.; Forrest, S.C.; Matchett, M.R.; Breck, S.W. Conserving endangered blackfooted ferrets: Biological threats, political challenges, and lessons learned. Imperiled: The encyclopedia of conservation 2022, 1-3, pp. 458-470.
- Dunlop, J.A.; Watson, M.J. The hitchhiker's guide to Australian conservation: A parasitological perspective on fauna translocations. Austral Ecol. 2022, 47, 748–764. [Google Scholar] [CrossRef]
- Fontaine, B.; van Achterberg, K.; Alonso-Zarazaga, M.A.; Araujo, R.; Asche, M.; Aspöck, H.; Aspöck, U.; Audisio, P.; Aukema, B.; Bailly, N.; et al. New Species in the Old World: Europe as a Frontier in Biodiversity Exploration, a Test Bed for 21st Century Taxonomy. PLOS ONE 2012, 7, e36881. [Google Scholar] [CrossRef]
- Carlson, C.J.; Hopkins, S.; Bell, K.C.; Doña, J.; Godfrey, S.S.; Kwak, M.L.; Lafferty, K.D.; Moir, M.L.; Speer, K.A.; Strona, G.; et al. A global parasite conservation plan. Biol. Conserv. 2020, 250, 108596. [Google Scholar] [CrossRef]
- E Galbreath, K.; Hoberg, E.P.; A Cook, J.; Armién, B.; Bell, K.C.; Campbell, M.L.; Dunnum, J.L.; Dursahinhan, A.T.; Eckerlin, R.P.; Gardner, S.L.; et al. Building an integrated infrastructure for exploring biodiversity: field collections and archives of mammals and parasites. J. Mammal. 2019, 100, 382–393. [Google Scholar] [CrossRef]
- Galloway, T.D. Biodiversity of Ectoparasites: Lice (Phthiraptera) and Fleas (Siphonaptera). J. Insect Biodivers. Syst. 2018, 457–482. [Google Scholar] [CrossRef]
- Kwak, M.L.; Heath, A.C.; Cardoso, P. Methods for the assessment and conservation of threatened animal parasites. Biol. Conserv. 2020, 248, 108696. [Google Scholar] [CrossRef]
- López-Pérez, A.M.; Gage, K.; Rubio, A.V.; Montenieri, J.; Orozco, L.; Suzan, G. Drivers of flea (Siphonaptera) community structure in sympatric wild carnivores in northwestern Mexico. J. Vector Ecol. 2018, 43, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Orlova, M.V.; Orlov, O.L. Conservation of parasitic animal species: Problems and perspectives. Nat. Conserv. Res. 2019, 4, 1–21. [Google Scholar] [CrossRef]
- Small, E. In defence of the world’s most reviled invertebrate ‘bugs. ’ Biodiversity 2019, 20, 168–221. [Google Scholar] [CrossRef]
- Urdapilleta, M.; Linardi, P.M.; Lareschi, M. Fleas associated with sigmodontine rodents and marsupials from the Paranaense Forest in Northeastern Argentina. Acta Trop. 2019, 193, 71–77. [Google Scholar] [CrossRef]
- Acosta, R.; Guzmán-Cornejo, C.; Quiñonez Cisneros, F.A.; Torres Quiñonez, A.A.; Fernández, J.A. New records of ectoparasites for Mexico and their prevalence in the montane shrew Sorex monticolus (E¬ulipotyphla: Soricidae) at Cerro del Mohinora, Sierra Madre Occidental of Chihuahua, Mexico. Zootaxa 2020, 4809, 393–396. [Google Scholar] [CrossRef]
- Duffus, N.E.; Morimoto, J. Current conservation policies in the UK and Ireland overlook endangered insects and are taxonomically biased towards Lepidoptera. Biol. Conserv. 2022, 266, 109464. [Google Scholar] [CrossRef]
- Hatcher, M.J.; Dick, J.T.; Dunn, A.M. Diverse effects of parasites on ecosystems: Linking interdependent processes. Front. Ecol. Environ. 2012, 10, 186–194. [Google Scholar] [CrossRef]
- Kluever, B.M.; Iles, D.T.; Gese, E.M. Ectoparasite burden influences the denning behavior of a small desert carnivore. Ecosphere 2019, 10, e02749. [Google Scholar] [CrossRef]
- Telfer, S.; Brown, E.M.; Sekules, R.; Begon, I.; Hayden, T.; Birtel, R. Disruption of a hostparasite system following the introduction of an exotic host species. Parasitol. 2005, 130, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.J. What drives population-level effects of parasites? Meta-analysis meets life-history. Int. J. Parasitol. Parasites Wildl. 2013, 2, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Fellin, E.; Schulte-Hostedde, A. Effects of ticks on community assemblages of ectoparasites in deer mice. Ticks Tick-borne Dis. 2022, 13, 101846. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
