Ijeoma, M.W.; Chen, H.; Carbajales-Dale, M.; Yakubu, R.O. Techno-Economic Assessment of the Viability of Commercial Solar PV System in Port Harcourt, Rivers State, Nigeria. Energies2023, 16, 6803.
Ijeoma, M.W.; Chen, H.; Carbajales-Dale, M.; Yakubu, R.O. Techno-Economic Assessment of the Viability of Commercial Solar PV System in Port Harcourt, Rivers State, Nigeria. Energies 2023, 16, 6803.
Ijeoma, M.W.; Chen, H.; Carbajales-Dale, M.; Yakubu, R.O. Techno-Economic Assessment of the Viability of Commercial Solar PV System in Port Harcourt, Rivers State, Nigeria. Energies2023, 16, 6803.
Ijeoma, M.W.; Chen, H.; Carbajales-Dale, M.; Yakubu, R.O. Techno-Economic Assessment of the Viability of Commercial Solar PV System in Port Harcourt, Rivers State, Nigeria. Energies 2023, 16, 6803.
Abstract
Supermarkets in Port Harcourt (PH) city, Nigeria, predominantly rely on diesel electricity generation due to grid instability, leading to high cost of electricity prices. Although solar photovoltaic (PV) systems have been proposed as an alternative, these supermarkets have yet to adopt them, mainly due to high investment costs and a lack of awareness of the long-term financial and environmental benefits. This paper examines the technical and economic practicality of a PV system for these supermarkets using the PVsyst software and a spreadsheet model. Solar resources showed that PH has a daily average solar radiation and temperature of 4.21 kWh/m2/day and 25.73℃, respectively. Market Square, the supermarket with the highest peak power demand of 59.8 kW, and a 561 kWh/day load profile, was chosen as a case study. A proposed PV system with a power capacity of 232 kW, battery storage capacity of 34,021 Ah, a charge controller size of 100 A/560V, and an inverter with a power rating of 60V/75 kW has been designed to meet the load demand. The economic analysis showed a $266,936 life cycle cost, $0.12 per kWh levelized cost of electricity (LCOE), 4-year simple payback time, and a 20.5% internal rate of return (IRR). The PV system is feasible due to its positive net present value (NPV) of $165,322 and carbon savings of 582 tCO2/year.
Keywords
PV design; solar energy; feasibility analysis; life cycle cost; levelized cost of electricity; net present value; simple payback time; internal rate of return; economic assessment; environmental assessment.
Subject
Engineering, Energy and Fuel Technology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.