Submitted:
04 January 2026
Posted:
05 January 2026
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Key Points in Stem Cells and Regenerative Medicine

3. Historical Data and a Few Key Points in Tissue Engineering

4. Conclusions
References
- Li M., Ma J., Gao Y., Yang L. Cell sheet technology: a promising strategy in regenerative medicine. Cytotherapy. 2019;21(1):3–16. [CrossRef]
- Weinberg R.S. Transfusion medicine and hemostasis. Elsevier; 2019. Overview of cellular therapy; pp. 505–512.
- Mahla R.S. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol. 2016;2016:6940283. [CrossRef]
- Barker, C.F. & Markmann, J.F. Historical overview of transplantation. Cold Spring Harb. Perspect. Med. 3, 1–18 (2013). [CrossRef]
- Sampogna, G. , Guraya, S.Y. & Forgione, A. Regenerative medicine: historical roots and potential strategies in modern medicine. J. Microsc. Ultrastruct. 3, 101–107 (2015). [CrossRef]
- Slingerland, A.S. , Smits, A.I.P.M. & Bouten, C.V.C. Then and now: hypes and hopes of regenerative medicine. Trends Biotechnol. 31, 121–123 (2013). [CrossRef]
- Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451(7175):141–6. [CrossRef]
- Terzic, A., Pfenning, M.A., Gores, G.J. & Harper, C.M. Jr. Regenerative medicine build-out. Stem Cells Transl. Med. 4, 1373–1379 (2015). [CrossRef]
- Kaul, H. & Ventikos, Y. On the genealogy of tissue engineering and regenerative medicine. Tissue Eng. Part B Rev. 21, 203–217 (2015). [CrossRef]
- Broughton, K.M. & Sussman, M.A. Enhancement strategies for cardiac regenerative cell therapy. Circ. Res. 123, 177–187 (2018). [CrossRef]
- Allickson, J.G. Emerging translation of regenerative therapies. Clin. Pharmacol. Ther. 101, 28–30 (2017). [CrossRef]
- Heathman, T.R., Nienow, A.W., McCall, M.J., Coopman, K., Kara, B. & Hewitt, C.J. The translation of cellbased therapies: clinical landscape and manufacturing challenges. Regen. Med. 10, 49–64 (2015). 13. Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008 Epub ahead of print. [CrossRef]
- Mount, N.M., Ward, S.J., Kefalas, P. & Hyllner, J. Cell-based therapy technology classifications and translational challenges. Philos. Trans. R. Soc. B Biol. Sci. 370, 20150017 (2015). [CrossRef]
- Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453(7194):524. [CrossRef]
- Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotech. 2008;26(1):101–106. [CrossRef]
- Smit, F.E. & Dohmen, P.M. Cardiovascular tissue engineering: where we come from and where are we now? Med. Sci. Monit. Basic Res. 20, 1–3 (2014). [CrossRef]
- Wernig M, Zhao JP, Pruszak J, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with parkinson’s disease. Proc Natl Acad Sci USA. 2008;105(15):5856 – 61. [CrossRef]
- Greenfield JP, Ayuso-Sacido A, Schwartz TH, et al. Use of human neural tissue for the generation of progenitors. Neurosurgery. 2008;62(1):21–37. [CrossRef]
- Yamanaka S, Jinliang Li, Kania G, et al. Pluripotency of embryonic stem cells. Cell Tissue Res. 2008;331:5–22. [CrossRef]
- Ptaszek L.M., Mansour M., Ruskin J.N., Chien K.R. Towards regenerative therapy for cardiac disease. Lancet. 2012;379(9819):933–942. 22. Li M., Ma J., Gao Y., Yang L. Cell sheet technology: a promising strategy in regenerative medicine. Cytotherapy. 2019;21(1):3–16.
- Li M., Ma J., Gao Y., Yang L. Cell sheet technology: a promising strategy in regenerative medicine. Cytotherapy. 2019;21(1):3–16. [CrossRef]
- Weinberg R.S. Transfusion medicine and hemostasis. Elsevier; 2019. Overview of cellular therapy; pp. 505–512.
- Mahla R.S. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol. 2016;2016:6940283. [CrossRef]
- Kolios G., Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2013;85(1):3–10. [CrossRef]
- Vacanti JP, Otte J-B, Wertheim JA. In: Introduction: Regenerative medicine and solid organ transplantation from a historical perspective. Regenerative Medicine Applications in Organ Transplantation. Orlando G, Lerut J, Soker S, Stratta RJ, editors. Elsevier; London: 2014. pp. 1–15.
- Buckler L. Opportunities in regenerative medicine. Bioprocess Int. 2011;2011(March):14–18.
- Fisher MB, Mauck RL. Tissue engineering and regenerative medicine: Recent innovations and the transition to translation. Tissue Eng Part B Rev. 2013;19(1):1–13. [CrossRef]
- Dewan AK, Gibson MA, Elisseeff JH, Trice ME. Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. BioMed Res Int. 2014;2014:272481. [CrossRef]
- Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: Tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287–309. [CrossRef]
- Oh J, Lee YD, Wagers AJ. Stem cell aging: Mechanisms, regulators and therapeutic opportunities. Nat Med. 2014;20(8):870–880. [CrossRef]
- Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. [CrossRef]
- Scales BS, Huffnagle GB. The microbiome in wound repair and tissue fibrosis. J Pathol. 2013;229(2):323–331. [CrossRef]
- Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: Molecular and cellular mechanisms. J Invest Dermatol. 2007;127(3):514–525. [CrossRef]
- Schmidt-Bleek K, Kwee BJ, Mooney DJ, Duda GN. Boon and bane of inflammation in bone tissue regeneration and its link with angiogenesis. Tissue Eng Part B Rev. 2015;21(4):354–364. [CrossRef]
- Abo KM et al. (2020) Human iPSC-derived alveolar and airway epithelial cells can be cultured at air-liquid interface and express SARS-CoV-2 host factors bioRxiv.
- Bianchi F et al. (2018) Rapid and efficient differentiation of functional motor neurons from human iPSC for neural injury modelling Stem Cell Res 32:126–134. [CrossRef]
- Corbett JL, Duncan SA (2019) iPSC-Derived Hepatocytes as a Platform for Disease Modeling and Drug Discovery Front Med (Lausanne) 6:265. [CrossRef]
- Ehrlich M et al. (2017) Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors Proc Natl Acad Sci U S A 114:E2243–E225. [CrossRef]
- Hallett PJ et al. (2015) Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease Cell Stem Cell 16:269–274. [CrossRef]
- Karakikes I, Ameen M, Termglinchan V, Wu JC (2015) Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes Circ Res 117:80–88. [CrossRef]
- Ma H, Wert KJ, Shvartsman D, Melton DA, Jaenisch R (2018) Establishment of human pluripotent stem cell-derived pancreatic beta-like cells in the mouse pancreas Proc Natl Acad Sci U S A 115:3924–3929. [CrossRef]
- Soubannier V, Maussion G, Chaineau M, Sigutova V, Rouleau G, Durcan TM, Stifani S (2020) Characterization of human iPSC-derived astrocytes with potential for disease modeling and drug discovery Neurosci Lett 731:135028. [CrossRef]
- Doris A Taylor , Rohan B Parikh , Luiz C Sampaio, Bioengineering Hearts: Simple yet Complex, Curr Stem Cell Rep., 2017 Feb 10;3(1):35–44. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).