Submitted:
26 June 2024
Posted:
01 July 2024
Read the latest preprint version here
Abstract
Keywords:
Outline:
Introduction:
Clonal Mutations:
Overcome:
Conclusions:
Author information
Funding
Acknowledgments
Conflicts of interest
References
| i | Hossain MS, Biswas I. An Extracellular Protease, SepM, Generates Functional Competence-Stimulating Peptide in Streptococcus mutans UA159. J Bacteriol 2012;194(21):5886–5896; https://doi.org/10.1128/JB.01381-12. |
| ii | Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. New England Journal of Medicine 2017;376:917–27. https://doi.org/10.1056/NEJMoa1609324. |
| iii | De Marco RC, Monzo HJ, Ojala PM. CAR T Cell Therapy: A Versatile Living Drug. Int J Mol Sci 2023;24:6300. https://doi.org/10.3390/ijms24076300. |
| iv | Sun L, Funchain P, Song JM, Rayman P, Tannenbaum C, Ko J, et al. Talimogene Laherparepvec combined with anti-PD-1 based immunotherapy for unresectable stage III-IV melanoma: a case series. J Immunother Cancer 2018;6:36. https://doi.org/10.1186/s40425-018-0337-7. |
| v | Ferrucci PF, Pala L, Conforti F, Cocorocchio E. Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers (Basel) 2021;13:1383. https://doi.org/10.3390/cancers13061383. |
| 6 |
vi] Xu B, Ma R, Russell L, Yoo JY, Han J, Cui H, et al. An oncolytic herpesvirus expressing E-cadherin improves survival in mouse models of glioblastoma. Nat Biotechnol 2019;37:45–54. https://doi.org/10.1038/nbt.4302. |
| vii | Pham TV, Boichard A, Goodman A, Riviere P, Yeerna H, Tamayo P, et al. Role of ultraviolet mutational signature versus tumor mutation burden in predicting response to immunotherapy. Mol Oncol 2020;14:1680–94. https://doi.org/10.1002/1878-0261.12748. |
| viii | Su Y, Su C, Qin L. Current landscape and perspective of oncolytic viruses and their combination therapies. Transl Oncol 2022;25:101530. https://doi.org/10.1016/j.tranon.2022.101530. |
| ix | Hietanen E, Koivu MKA, Susi P. Cytolytic Properties and Genome Analysis of Rigvir® Oncolytic Virotherapy Virus and Other Echovirus 7 Isolates. Viruses 2022;14(3):525; https://doi.org/10.3390/v14030525. |
| x | Alberts P, Tilgase A, Rasa A, Bandere K, Venskus D. The advent of oncolytic virotherapy in oncology: The Rigvir® story. Eur J Pharmacol 2018;837:117–26. https://doi.org/10.1016/j.ejphar.2018.08.042. |
| xi | Zhang Q, Li Y, Zhao Q, Tian M, Chen L, Miao L, et al. Recombinant human adenovirus type 5 (Oncorine) reverses resistance to immune checkpoint inhibitor in a patient with recurrent non-small cell lung cancer: A case report. Thorac Cancer 2021;12:1617–9. https://doi.org/10.1111/1759-7714.13947. |
| xii | Sugawara K, Iwai M, Ito H, Tanaka M, Seto Y, Todo T. Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. Mol Ther Oncolytics 2021;22:129–42. https://doi.org/10.1016/j.omto.2021.05.004. |
| xiii | Katims AB, Tallman J, Vertosick E, Porwal S, Dalbagni G, Cha EK, et al. Response to 2 Induction Courses of Bacillus Calmette-Guèrin Therapy Among Patients With High-Risk Non-Muscle-Invasive Bladder Cancer: 5-year Follow-Up of a Phase 2 Clinical Trial. JAMA Oncol 2024:e236804. https://doi.org/10.1001/jamaoncol.2023.6804. |
| xiv | Antonelli AC, Binyamin A, Hohl TM, Glickman MS, Redelman-Sidi G. Bacterial immunotherapy for cancer induces CD4-dependent tumor-specific immunity through tumor-intrinsic interferon-γ signaling. Proc Natl Acad Sci U S A 2020;117:18627–37. https://doi.org/10.1073/pnas.2004421117. |
| xv | Hayes TK, Meyerson M. Molecular portraits of lung cancer evolution. Nature 2023;616:435–6. https://doi.org/10.1038/d41586-023-00934-0. |
| xvi | Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010;467:1114–7. https://doi.org/10.1038/nature09515. |
| xvii | Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New England Journal of Medicine 2012;366:883–92. |
| xviii | Schrijver WA, Selenica P, Lee JY, Ng CKY, Burke KA, Piscuoglio S, et al. Mutation profiling of key cancer genes in primary breast cancers and their distant metastases. Cancer Res 2018;78:3112–21. https://doi.org/10.1158/0008-5472.CAN-17-2310. |
| xix | Mitchell TJ, Turajlic S, Rowan A, Nicol D, Farmery JHR, O’Brien T, et al. Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal. Cell 2018;173:611-623.e17. https://doi.org/10.1016/j.cell.2018.02.020. |
| xx | Spain L, Coulton A, Lobon I, Rowan A, Schnidrig D, Shepherd STC, et al. Late-Stage Metastatic Melanoma Emerges through a Diversity of Evolutionary Pathways. Cancer Discov 2023;13:1364–85. https://doi.org/10.1158/2159-8290.CD-22-1427. |
| xxi | Frankell AM, Dietzen M, Al Bakir M, Lim EL, Karasaki T, Ward S, et al. The evolution of lung cancer and impact of subclonal selection in TRACERx. Nature 2023;616:525–33. https://doi.org/10.1038/s41586-023-05783-5. |
| xxii | Thiele J-A, Bethel K, Králíčková M, Kuhn P. Circulating Tumor Cells: Fluid Surrogates of Solid Tumors. Annu Rev Pathol 2017;12:419–47. https://doi.org/10.1146/annurev-pathol-052016-100256. |
| xxiii | Murtaza M, Dawson S-J, Pogrebniak K, Rueda OM, Provenzano E, Grant J, et al. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer. Nat Commun 2015;6:8760. https://doi.org/10.1038/ncomms9760. |
| xxiv | Pereira B, Chen CT, Goyal L, Walmsley C, Pinto CJ, Baiev I, et al. Cell-free DNA captures tumor heterogeneity and driver alterations in rapid autopsies with pre-treated metastatic cancer. Nat Commun 2021;12:3199. https://doi.org/10.1038/s41467-021-23394-4. |
| xxv | Li S, Hu R, Small C, Kang T-Y, Liu C-C, Zhou XJ, et al. cfSNV: a software tool for the sensitive detection of somatic mutations from cell-free DNA. Nat Protoc 2023;18:1563–83. https://doi.org/10.1038/s41596-023-00807-w. |
| xxvi | Abbosh C, Frankell AM, Harrison T, Kisistok J, Garnett A, Johnson L, et al. Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA. Nature 2023;616:553–62. https://doi.org/10.1038/s41586-023-05776-4. |
| xxvii | Martin-Alonso C, Tabrizi S, Xiong K, Blewett T, Sridhar S, Crnjac A, et al. Priming agents transiently reduce the clearance of cell-free DNA to improve liquid biopsies. Science 2024;383:eadf2341. https://doi.org/10.1126/science.adf2341. |
| xxviii | Escudero L, Martínez-Ricarte F, Seoane J. ctDNA-Based Liquid Biopsy of Cerebrospinal Fluid in Brain Cancer. Cancers (Basel) 2021;13:1989. https://doi.org/10.3390/cancers13091989. |
| xxix | Robertson J, Salm M, Dangl M. Adoptive cell therapy with tumour-infiltrating lymphocytes: the emerging importance of clonal neoantigen targets for next-generation products in non-small cell lung cancer. Immunooncol Technol 2019;3:1–7. https://doi.org/10.1016/j.iotech.2019.09.003. |
| xxx | Bubeník J. Tumour MHC class I downregulation and immunotherapy (Review). Oncol Rep 2003;10:2005–8. |
| xxxi | Renteln M. Conditional replication of oncolytic viruses based on detection of oncogenic mRNA. Gene Ther 2018;25(1):1–3; https://doi.org/10.1038/gt.2017.99. |
| xxxii | Renteln MA. Promoting Oncolytic Vector Replication with Switches that Detect Ubiquitous Mutations. CCTR 2024;20:40–52. https://doi.org/10.2174/1573394719666230502110244. |
| xxxiii | Adamala KP, Martin-Alarcon DA, Boyden ES. Programmable RNA-binding protein composed of repeats of a single modular unit. Proceedings of the National Academy of Sciences 2016;201519368; https://doi.org/10.1073/pnas.1519368113. |
| xxxiv | Kim SJ, Kim JH, Yang B, et al. Specific and Efficient Regression of Cancers Harboring KRAS Mutation by Targeted RNA Replacement. Molecular Therapy 2017;25(2):356–367; https://doi.org/10.1016/j.ymthe.2016.11.005. |
| xxxv | Azhar Mohd, Phutela R, Kumar M, et al. Rapid and accurate nucleobase detection using FnCas9 and its application in COVID-19 diagnosis. Biosensors and Bioelectronics 2021;183:113207; https://doi.org/10.1016/j.bios.2021.113207. |
| xxxvi | Langan RA, Boyken SE, Ng AH, et al. De novo design of bioactive protein switches. Nature 2019;572(7768):205–210; https://doi.org/10.1038/s41586-019-1432-8. |
| xxxvii | Kaseniit KE, Katz N, Kolber NS, et al. Modular, programmable RNA sensing using ADAR editing in living cells. Nat Biotechnol 2023;41(4):482–487; https://doi.org/10.1038/s41587-022-01493-x. |
| xxxviii | Hu C, van Beljouw SPB, Nam KH, et al. Craspase is a CRISPR RNA-guided, RNA-activated protease. Science 2022;377(6612):1278–1285; https://doi.org/10.1126/science.add5064. |
| xxxix | McKee TD, Grandi P, Mok W, et al. Degradation of Fibrillar Collagen in a Human Melanoma Xenograft Improves the Efficacy of an Oncolytic Herpes Simplex Virus Vector. Cancer Research 2006;66(5):2509–2513; https://doi.org/10.1158/0008-5472.CAN-05-2242. |
| xl | Rauschhuber C, Mueck-Haeusl M, Zhang W, et al. RNAi suppressor P19 can be broadly exploited for enhanced adenovirus replication and microRNA knockdown experiments. Sci Rep 2013;3:1363; https://doi.org/10.1038/srep01363. |
| xli | Toesca IJ, French CT, Miller JF. The Type VI Secretion System Spike Protein VgrG5 Mediates Membrane Fusion during Intercellular Spread by Pseudomallei Group Burkholderia Species. Infection and Immunity 2014;82(4):1436–1444; https://doi.org/10.1128/iai.01367-13. |
| xlii | Sette P, Amankulor N, Li A, et al. GBM-Targeted oHSV Armed with Matrix Metalloproteinase 9 Enhances Anti-tumor Activity and Animal Survival. Molecular Therapy - Oncolytics 2019;15:214–222; https://doi.org/10.1016/j.omto.2019.10.005. |
| xliii | Huang H, Liu Y, Liao W, Cao Y, Liu Q, Guo Y, et al. Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy. Nat Commun 2019;10:4801. https://doi.org/10.1038/s41467-019-12794-2. |
| xliv | Zhang S, Chen H, Wang J. Generate TALE/TALEN as Easily and Rapidly as Generating CRISPR. Mol Ther Methods Clin Dev 2019;13:310–320; https://doi.org/10.1016/j.omtm.2019.02.004. |
| xlv | Ichikawa DM, Abdin O, Alerasool N, et al. A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nat Biotechnol 2023;41(8):1117–1129; https://doi.org/10.1038/s41587-022-01624-4. |
| xlvi | Varshavsky A. Targeting the absence: homozygous DNA deletions as immutable signposts for cancer therapy. Proc Natl Acad Sci USA 2007;104(38):14935–14940; https://doi.org/10.1073/pnas.0706546104. |
| xlvii | Slomovic S, Collins JJ. DNA sense-and-respond protein modules for mammalian cells. Nature Methods 2015;12(11):1085–1090; https://doi.org/10.1038/nmeth.3585. |
| xlviii | Fink T, Lonzarić J, Praznik A, Plaper T, Merljak E, Leben K, et al. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat Chem Biol 2019;15:115–22. https://doi.org/10.1038/s41589-018-0181-6. |
| xlix | Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, et al. Phase I Study of the Intravenous Administration of Attenuated Salmonella typhimurium to Patients With Metastatic Melanoma. J Clin Oncol 2002;20:142–52. |
| l | Heimann DM, Rosenberg SA. Continuous Intravenous Administration of Live Genetically Modified Salmonella Typhimurium in Patients With Metastatic Melanoma. J Immunother 2003;26:179–80. |
| li | Le DT, Picozzi VJ, Ko AH, Wainberg ZA, Kindler H, Wang-Gillam A, et al. Results from a Phase IIb, Randomized, Multicenter Study of GVAX Pancreas and CRS-207 Compared with Chemotherapy in Adults with Previously Treated Metastatic Pancreatic Adenocarcinoma (ECLIPSE Study). Clin Cancer Res 2019;25:5493–502. https://doi.org/10.1158/1078-0432.CCR-18-2992. |
| lii | Duong MT-Q, Qin Y, You S-H, Min J-J. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med 2019;51:1–15. https://doi.org/10.1038/s12276-019-0297-0. |
| liii | Sun R, Liu M, Lu J, Chu B, Yang Y, Song B, et al. Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy. Nat Commun 2022;13:5127. https://doi.org/10.1038/s41467-022-32837-5. |
| liv | Mi Z, Yao Q, Qi Y, Zheng J, Liu J, Liu Z, et al. Salmonella-mediated blood‒brain barrier penetration, tumor homing and tumor microenvironment regulation for enhanced chemo/bacterial glioma therapy. Acta Pharmaceutica Sinica B 2023;13:819–33. https://doi.org/10.1016/j.apsb.2022.09.016. |
| lv | Raman V, Van Dessel N, Hall CL, Wetherby VE, Whitney SA, Kolewe EL, et al. Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases. Nat Commun 2021;12:6116. https://doi.org/10.1038/s41467-021-26367-9. |
| lvi | Ding Y-D, Shu L-Z, He R-S, Chen K-Y, Deng Y-J, Zhou Z-B, et al. Listeria monocytogenes: a promising vector for tumor immunotherapy. Front Immunol 2023;14:1278011. https://doi.org/10.3389/fimmu.2023.1278011. |
| lvii | Xu J, Yang S, Yang L. Vibrio natriegens as a host for rapid biotechnology. Trends Biotechnol 2022;40:381–4. https://doi.org/10.1016/j.tibtech.2021.10.007. |
| lviii | Grillot-Courvalin C, Goussard S, Huetz F, Ojcius DM, Courvalin P. Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 1998;16:862–6. https://doi.org/10.1038/nbt0998-862. |
| lix | Gäbelein CG, Reiter MA, Ernst C, Giger GH, Vorholt JA. Engineering Endosymbiotic Growth of E. coli in Mammalian Cells. ACS Synth Biol 2022;11:3388–96. https://doi.org/10.1021/acssynbio.2c00292. |
| lx | Pfeifer E, Michniewski S, Gätgens C, Münch E, Müller F, Polen T, et al. Generation of a Prophage-Free Variant of the Fast-Growing Bacterium Vibrio natriegens. Appl Environ Microbiol 2019;85:e00853-19. https://doi.org/10.1128/AEM.00853-19. |
| lxi | Kamaraju K, Smith J, Wang J, Roy V, Sintim HO, Bentley WE, et al. Effects on membrane lateral pressure suggest permeation mechanisms for bacterial quorum signaling molecules. Biochemistry 2011;50:6983–93. https://doi.org/10.1021/bi200684z. |
| lxii | Piñero-Lambea C, Bodelón G, Fernández-Periáñez R, et al. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth Biol 2015;4(4):463–473; https://doi.org/10.1021/sb500252a. |
| lxiii | Bausch-Fluck D, Goldmann U, Müller S, et al. The in silico human surfaceome. PNAS 2018;115(46):E10988–E10997; https://doi.org/10.1073/pnas.1808790115. |
| lxiv | Ortega FE, Rengarajan M, Chavez N, et al. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells. MBoC 2017;28(22):2945–2957; https://doi.org/10.1091/mbc.e16-12-0851. |
| lxv | Niemann HH, Schubert W-D, Heinz DW. Adhesins and invasins of pathogenic bacteria: a structural view. Microbes and Infection 2004;6(1):101–112; https://doi.org/10.1016/j.micinf.2003.11.001. |
| lxvi | Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes and Infection 2015;17(3):173–183; https://doi.org/10.1016/j.micinf.2015.01.004. |
| lxvii | Lerminiaux NA, MacKenzie KD, Cameron ADS. Salmonella Pathogenicity Island 1 (SPI-1): The Evolution and Stabilization of a Core Genomic Type Three Secretion System. Microorganisms 2020;8(4):576; https://doi.org/10.3390/microorganisms8040576. |
| lxviii | Miller ST, Xavier KB, Campagna SR, et al. Salmonella typhimurium Recognizes a Chemically Distinct Form of the Bacterial Quorum-Sensing Signal AI-2. Molecular Cell 2004;15(5):677–687; https://doi.org/10.1016/j.molcel.2004.07.020. |
| lxix | Singer ZS, Pabón J, Huang H, et al. Engineered Bacteria Launch and Control an Oncolytic Virus. 2023;2023.09.28.559873; https://doi.org/10.1101/2023.09.28.559873. |
| lxx | Liu X, Zhang L, Wang H, et al. Target RNA activates the protease activity of Craspase to confer antiviral defense. Molecular Cell 2022;82(23):4503-4518.e8; https://doi.org/10.1016/j.molcel.2022.10.007. |
| lxxi | Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017;356(6336):438–442; https://doi.org/10.1126/science.aam9321. |
| lxxii | Molinari S, Shis DL, Bhakta SP, et al. A synthetic system for asymmetric cell division in Escherichia coli. Nat Chem Biol 2019;15(9):917–924; https://doi.org/10.1038/s41589-019-0339-x. |
| lxxiii | Lin D-W, Liu Y, Lee Y-Q, et al. Construction of intracellular asymmetry and asymmetric division in Escherichia coli. Nat Commun 2021;12:888; https://doi.org/10.1038/s41467-021-21135-1. |
| lxxiv | Schoen C, Kolb-Mäurer A, Geginat G, et al. Bacterial delivery of functional messenger RNA to mammalian cells. Cell Microbiol 2005;7(5):709–724; https://doi.org/10.1111/j.1462-5822.2005.00507.x. |
| lxxv | Teubner L, Frantz R, La Pietra L, et al. SecA2 Associates with Translating Ribosomes and Contributes to the Secretion of Potent IFN-β Inducing RNAs. Int J Mol Sci 2022;23(23):15021; https://doi.org/10.3390/ijms232315021. |
| lxxvi | Pagliuso A, Tham TN, Allemand E, et al. An RNA-Binding Protein Secreted by a Bacterial Pathogen Modulates RIG-I Signaling. Cell Host Microbe 2019;26(6):823-835.e11; https://doi.org/10.1016/j.chom.2019.10.004. |
| lxxvii | van Beljouw SPB, Haagsma AC, Kalogeropoulos K, et al. Craspase Orthologs Cleave a Nonconserved Site in Target Protein Csx30. ACS Chem Biol 2024;19(5):1051–1055; https://doi.org/10.1021/acschembio.3c00788. |
| lxxviii | Packer MS, Rees HA, Liu DR. Phage-assisted continuous evolution of proteases with altered substrate specificity. Nat Commun 2017;8(1):956; https://doi.org/10.1038/s41467-017-01055-9. |
| lxxix | Chang H-J, Mayonove P, Zavala A, et al. A Modular Receptor Platform To Expand the Sensing Repertoire of Bacteria. ACS Synth Biol 2018;7(1):166–175; https://doi.org/10.1021/acssynbio.7b00266. |
| lxxx | Tokareva OS, Li K, Travaline TL, et al. Recognition and reprogramming of E3 ubiquitin ligase surfaces by α-helical peptides. Nat Commun 2023;14(1):6992; https://doi.org/10.1038/s41467-023-42395-z. |
| lxxxi | Bracha S, Hassi K, Ross PD, Cobb S, Sheiner L, Rechavi O. Engineering Brain Parasites for Intracellular Delivery of Therapeutic Proteins 2018:481192. https://doi.org/10.1101/481192. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).