Submitted:
17 August 2023
Posted:
18 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. miRNA production and dynamics
3. miRNAs as biomarkers in AKI
3.1. Overview of biomarkes in AKI
3.2. miRNAs as AKI biomarkers
4. miRNAs as therapeutic targets for AKI
4.1. Overview of treatment in AKI
4.2. Therapeutic targeting of miRNAs for AKI
| miRNA | Effect | Target | Model | Species | Function | Ref. |
|---|---|---|---|---|---|---|
| miR-21 | Protective | PTEN/Akt/mTOR Pdcd4/NFκ-B | I/R | Mice | Anti-apoptosis Anti-inflammation |
[71] |
| Protective | MKK3 | I/R | Mice | Anti-inflammation | [77] | |
| - | AKT/CDK2-FOXO1 | Sepsis | Rats | Metabolism alteration | [80] | |
| Protective | CDK6 | LPS | Mice | Anti-apoptosis | [75] | |
| Protective | CCR7 | I/R | Mice | Anti-inflammation | [76] | |
| Pathogenic | Rab11a | I/R | Rats | Anti-autophagy | [78] | |
| miR-30 | Protective | DRP1 | I/R | Rats | Anti-apoptosis | [81] |
| Protective | M1-M2 macrophage transition | I/R | Rats | Anti-inflammation | [82] | |
| miR-17 | Protective | DR6 | I/R | Mice | Anti-apoptosis | [93] |
| miR-5100 | Protective | Apoptotic pathway | I/R | Mice | Anti-apoptosis | [55] |
| miR-187 | Protective | AChE | I/R | - | Podocyte protection | [108] |
| miR-182 | Pathogenic | - | I/R | Rats | - | [116] |
| Pathogenic | TCF7L2/Wnt/β-catenin | I/R | Rats | Apoptosis | [117] | |
| Pathogenic | FoxO3 | I/R | Rats | Apoptosis | [118] | |
| miR-489 | Protective | PARP1 | I/R | Mice | Anti-apoptosis | [73] |
| miR-668 | Protective | MTP18 | I/R | Mice | Mitochondrial dynamics |
[72] |
| miR-27 | Protective | OSMR | I/R | Rats | PI3K/AKT signal | [103] |
| Protective | TLR4 | I/R | Rats | Anti-inflammation | [102] | |
| miR-140 | Protective | Nrf2 | Cisplatin | Mice | Anti-oxidative stress | [101] |
| Protective | CXCL12 | I/R | Mice | Anti-inflammation | [100] | |
| miR-125 | Pathogenic | MFN1 | Cisplatin | Mice | Mitochondrial damage | [140] |
| Protective | P53 | I/R | Mice | Anti-apoptosis | [111] | |
| miR-122 | Pathogenic | FoxO3 | Cisplatin | Mice | Apoptosis | [119] |
| miR-150 | Pathogenic | IGF-1R | Ischemic | Mice | Apoptosis Fibrosis |
[142] |
| Pathogenic | - | I/R | Mice | Fibrosis | [143] | |
| Pathogenic | SOCS1 | I/R | Mice | Fibrosis | [144] | |
| Protective | MEKK3/JNK | LPS | Mice | Anti-apoptosis | [141] | |
| miR-218 | Pathogenic | HO-1 | Sepsis | Mice | Apoptosis | [125] |
| miR-126 | Protective | - | I/R | Mice | Vascular protection | [107] |
| miR-195 | Protective | VEGFA | I/R | Rats | Anti-inflammation Anti-oxidative stress |
[99] |
| miR-181 | Protective | KLF6 | I/R | Mice | Anti-apoptosis Anti-inflammation |
[83] |
| Protective | PTEN | Cisplatin | Mice | - | [84] | |
| Protective | GJB2 | LPS | Mice | Anti-apoptosis | [85] | |
| Protective | NEK7 | Sepsis | Mice | Anti-pyroptosis | [86] | |
| miR-301 | Pathogenic | - | Vancomycin | Mice | Apoptosis | [120] |
| miR-709 | Pathogenic | TFAM | Cisplatin | Mice | Mitochondrial damage | [134] |
| mR-375 | Pathogenic | HNF1b | Cisplatin | Mice | Apoptosis | [121] |
| miR-204 | Protective | Hmx1 | Candidemia | Mice | Anti-inflammation | [98] |
| miR-211 | Protective | Hmx1 | Candidemia | Mice | Anti-inflammation | [98] |
| miR-590 | Protective | TRAF6 | LPS | Mice | Anti-apoptosis Anti-inflammation |
[89] |
| miR-152 | Pathogenic | ERRFI1 | Sepsis | Rats | Inflammation Apoptosis |
[133] |
| Pathogenic | SIRT7 | I/R | Rats | Apoptosis | [132] | |
| miR-155 | Pathogenic | SOCS1/STAT1 | LPS | Mice | Inflammation | [129] |
| Pathogenic | TCF4/Wnt/β-catenin | I/R | Rats | Apoptosis | [131] | |
| Pathogenic | SOCS1 | I/R | Mice | Tubular injury | [130] | |
| Pathogenic | - | Cisplatin | Mice | Apoptosis | [150] | |
| miR-106 | Pathogenic | THBS2 | Sepsis | Mice | Inflammation Apoptosis |
[128] |
| miR-22 | Protective | AIFM1 | Sepsis | Mice | Anti-apoptosis | [87] |
| Protective | HMGB1 | Sepsis | Rats | Anti-inflammation | [88] | |
| miR-107 | Protective | RPS19 | I/R | Rats | Anti-apoptosis | [112] |
| Pathogenic | DUSP7 | Sepsis | Mice | Tubular injury | [113] | |
| miR-290 | Protective | CCL2 | Sepsis | Mice | Anti-apoptosis | [97] |
| miR-34 | Pathogenic | NAMPT | I/R | Mice | NAD depletion | [139] |
| Pathogenic | Atg4B | I/R | Mice | Reduce autophagy | [138] | |
| Pathogenic | Bcl2 | Sepsis | Rats | Apoptosis | [137] | |
| Pathogenic | SIRT1 | Cisplatin | Mice | Apoptosis | [119] | |
| Protective | UBL4A | Sepsis | Mice | Anti-inflammation | [135] | |
| Protective | - | Cisplatin | Mice | Cytoprotective | [136] | |
| miR-188 | Pathogenic | SRSF7 | Contrast | Rat | Apoptosis | [122] |
| miR-214 | Pathogenic | Mfn2 | I/R | Mice | Apoptosis | [147] |
| Pathogenic | GLP-1R | LPS | Mice | Inflammation | [148] | |
| Pathogenic | GPX4 | Cisplatin | Mice | Ferroptosis | [149] | |
| Protective | PTEN/AKT/mTOR | Sepsis | Mice | Autophagy regualation | [146] | |
| Protective | Dkk3 | I/R | Mice | Anti-apoptosis | [145] | |
| miR-124 | Protective | PARP1 | I/R | Mice | Anti-necroptosis | [92] |
| Protective | - | I/R | Mice | Anti-apoptosis | [91] | |
| miR-146 | Protective | IRAK1 | I/R | Rats | Anti-inflammation | [104] |
| Protective | - | I/R | Mice | Anti-inflammation | [105] | |
| Protective | Tfdp2 | Cisplatin | Mice | Anti-fibrosis | [115] | |
| miR-687 | Pathogenic | - | LPS | Mice | Apoptosis | [123] |
| miR-24 | Pathogenic | H2A.X/HO-1 | I/R | Mice | Apoptosis | [124] |
| miR-494 | Pathogenic | ATF3 | I/R | Mice | Inflammation | [45] |
| Pathogenic | E-cadherin | I/R | Mice | Apoptosis | [126] | |
| Pathogenic | NF-κB signaling | LPS | Mice | Inflammation Apoptosis |
[127] | |
| miR-223 | Protective | NLRP3 | I/R | Mice | Anti-apoptosis | [110] |
| miR-15 | Protective | CX3CL1 | I/R | Rats | Anti-inflammation Anti-fibrosis |
[114] |
| miR-16 | Protective | CX3CL1 | I/R | Rats | Anti-inflammation Anti-fibrosis |
[114] |
| Pathogenic | - | I/R | Mice | Anti-apoptosis | [41] | |
| miR-199 | Protective | Sema3A/AKT/ERK | I/R | Mice | Anti-apoptosis | [109] |
| miR-210 | Protective | VEGF pathway | I/R | Mice | Angiogenesis | [106] |
| miR-486 | Protective | PTEN | I/R | Mice | Anti-apoptosis | [95] |
| miR-424 | Protective | DR6 | I/R | Mice | Anti-apoptosis | [94] |
| miR-191 | Protective | OXSR1 | Sepsis | Rat | Anti-apoptosis | [96] |
4.3. Therapy targeting MiRNAs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulger, F.; Pehlivanlar Kucuk, M.; Kucuk, A. O.; Ilkaya, N. K.; Murat, N.; Bilgic, B.; Abanoz, H., Evaluation of acute kidney injury (AKI) with RIFLE, AKIN, CK, and KDIGO in critically ill trauma patients. Eur J Trauma Emerg Surg 2018, 44, (4), 597-605. [CrossRef]
- Susantitaphong, P.; Cruz, D. N.; Cerda, J.; Abulfaraj, M.; Alqahtani, F.; Koulouridis, I.; Jaber, B. L.; Acute Kidney Injury Advisory Group of the American Society of, N., World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol 2013, 8, (9), 1482-93. [CrossRef]
- Hoste, E. A.; Bagshaw, S. M.; Bellomo, R.; Cely, C. M.; Colman, R.; Cruz, D. N.; Edipidis, K.; Forni, L. G.; Gomersall, C. D.; Govil, D.; Honore, P. M.; Joannes-Boyau, O.; Joannidis, M.; Korhonen, A. M.; Lavrentieva, A.; Mehta, R. L.; Palevsky, P.; Roessler, E.; Ronco, C.; Uchino, S.; Vazquez, J. A.; Vidal Andrade, E.; Webb, S.; Kellum, J. A., Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 2015, 41, (8), 1411-23.
- Singri, N.; Ahya, S. N.; Levin, M. L., Acute renal failure. JAMA 2003, 289, (6), 747-51.
- Perazella, M. A.; Shirali, A. C., Immune checkpoint inhibitor nephrotoxicity: what do we know and what should we do? Kidney Int 2020, 97, (1), 62-74. [CrossRef]
- Hanna, R. M.; Tran, N. T.; Patel, S. S.; Hou, J.; Jhaveri, K. D.; Parikh, R.; Selamet, U.; Ghobry, L.; Wassef, O.; Barsoum, M.; Bijol, V.; Kalantar-Zadeh, K.; Pai, A.; Amin, A.; Kupperman, B.; Kurtz, I. B., Thrombotic Microangiopathy and Acute Kidney Injury Induced After Intravitreal Injection of Vascular Endothelial Growth Factor Inhibitors VEGF Blockade-Related TMA After Intravitreal Use. Front Med (Lausanne) 2020, 7, 579603. [CrossRef]
- Bellomo, R.; Ronco, C.; Kellum, J. A.; Mehta, R. L.; Palevsky, P.; Acute Dialysis Quality Initiative, w., Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004, 8, (4), R204-12.
- Bhosale, S. J.; Kulkarni, A. P., Biomarkers in Acute Kidney Injury. Indian J Crit Care Med 2020, 24, (Suppl 3), S90-S93.
- Alge, J. L.; Arthur, J. M., Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol 2015, 10, (1), 147-55. [CrossRef]
- Cerda, J.; Lameire, N.; Eggers, P.; Pannu, N.; Uchino, S.; Wang, H.; Bagga, A.; Levin, A., Epidemiology of acute kidney injury. Clin J Am Soc Nephrol 2008, 3, (3), 881-6. [CrossRef]
- Coelho, S.; Cabral, G.; Lopes, J. A.; Jacinto, A., Renal regeneration after acute kidney injury. Nephrology (Carlton) 2018, 23, (9), 805-814. [CrossRef]
- Poulsom, R.; Forbes, S. J.; Hodivala-Dilke, K.; Ryan, E.; Wyles, S.; Navaratnarasah, S.; Jeffery, R.; Hunt, T.; Alison, M.; Cook, T.; Pusey, C.; Wright, N. A., Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 2001, 195, (2), 229-35. [CrossRef]
- Tsuji, K.; Kitamura, S.; Wada, J., Secretomes from Mesenchymal Stem Cells against Acute Kidney Injury: Possible Heterogeneity. Stem Cells Int 2018, 2018, 8693137. [CrossRef]
- Tsuji, K.; Kitamura, S., Trophic Factors from Tissue Stem Cells for Renal Regeneration. Stem Cells Int 2015, 2015, 537204. [CrossRef]
- Kitamura, S.; Yamasaki, Y.; Kinomura, M.; Sugaya, T.; Sugiyama, H.; Maeshima, Y.; Makino, H., Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J 2005, 19, (13), 1789-97. [CrossRef]
- Oliver, J. A.; Maarouf, O.; Cheema, F. H.; Martens, T. P.; Al-Awqati, Q., The renal papilla is a niche for adult kidney stem cells. J Clin Invest 2004, 114, (6), 795-804. [CrossRef]
- Maeshima, A.; Yamashita, S.; Nojima, Y., Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol 2003, 14, (12), 3138-46. [CrossRef]
- Lombardi, D.; Becherucci, F.; Romagnani, P., How much can the tubule regenerate and who does it? An open question. Nephrol Dial Transplant 2016, 31, (8), 1243-50. [CrossRef]
- Berger, K.; Bangen, J. M.; Hammerich, L.; Liedtke, C.; Floege, J.; Smeets, B.; Moeller, M. J., Origin of regenerating tubular cells after acute kidney injury. Proc Natl Acad Sci U S A 2014, 111, (4), 1533-8. [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C., Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) 2018, 9, 402. [CrossRef]
- Lee, R. C.; Feinbaum, R. L.; Ambros, V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, (5), 843-54. [CrossRef]
- Pasquinelli, A. E.; Reinhart, B. J.; Slack, F.; Martindale, M. Q.; Kuroda, M. I.; Maller, B.; Hayward, D. C.; Ball, E. E.; Degnan, B.; Muller, P.; Spring, J.; Srinivasan, A.; Fishman, M.; Finnerty, J.; Corbo, J.; Levine, M.; Leahy, P.; Davidson, E.; Ruvkun, G., Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000, 408, (6808), 86-9. [CrossRef]
- Xu, T.; Li, L. X.; Jia, Y.; Wu, Q.; Zhu, W.; Xu, Z.; Zheng, B.; Lu, X., One microRNA has the potential to target whole viral mRNAs in a given human coronavirus. Front Microbiol 2022, 13, 1035044. [CrossRef]
- Friedman, R. C.; Farh, K. K.; Burge, C. B.; Bartel, D. P., Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19, (1), 92-105. [CrossRef]
- Naeli, P.; Winter, T.; Hackett, A. P.; Alboushi, L.; Jafarnejad, S. M., The intricate balance between microRNA-induced mRNA decay and translational repression. FEBS J 2023, 290, (10), 2508-2524. [CrossRef]
- Lu, J.; Clark, A. G., Impact of microRNA regulation on variation in human gene expression. Genome Res 2012, 22, (7), 1243-54. [CrossRef]
- Mahtal, N.; Lenoir, O.; Tinel, C.; Anglicheau, D.; Tharaux, P. L., MicroRNAs in kidney injury and disease. Nat Rev Nephrol 2022, 18, (10), 643-662. [CrossRef]
- Wu, Y. L.; Li, H. F.; Chen, H. H.; Lin, H., MicroRNAs as Biomarkers and Therapeutic Targets in Inflammation- and Ischemia-Reperfusion-Related Acute Renal Injury. Int J Mol Sci 2020, 21, (18). [CrossRef]
- Suarez, B.; Sole, C.; Marquez, M.; Nanetti, F.; Lawrie, C. H., Circulating MicroRNAs as Cancer Biomarkers in Liquid Biopsies. Adv Exp Med Biol 2022, 1385, 23-73. [CrossRef]
- Connor, K. L.; Denby, L., MicroRNAs as non-invasive biomarkers of renal disease. Nephrol Dial Transplant 2021, 36, (3), 428-429. [CrossRef]
- Waikar, S. S.; Bonventre, J. V., Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol 2009, 20, (3), 672-9. [CrossRef]
- Jana, S.; Mitra, P.; Roy, S., Proficient Novel Biomarkers Guide Early Detection of Acute Kidney Injury: A Review. Diseases 2022, 11, (1). [CrossRef]
- Zdziechowska, M.; Gluba-Brzozka, A.; Poliwczak, A. R.; Franczyk, B.; Kidawa, M.; Zielinska, M.; Rysz, J., Serum NGAL, KIM-1, IL-18, L-FABP: new biomarkers in the diagnostics of acute kidney injury (AKI) following invasive cardiology procedures. Int Urol Nephrol 2020, 52, (11), 2135-2143. [CrossRef]
- Zou, C.; Wang, C.; Lu, L., Advances in the study of subclinical AKI biomarkers. Front Physiol 2022, 13, 960059. [CrossRef]
- Rosenqvist, M.; Bronton, K.; Hartmann, O.; Bergmann, A.; Struck, J.; Melander, O., Proenkephalin a 119-159 (penKid)—a novel biomarker for acute kidney injury in sepsis: an observational study. BMC Emerg Med 2019, 19, (1), 75. [CrossRef]
- Breglia, A.; Godi, I.; Virzi, G. M.; Guglielmetti, G.; Iannucci, G.; De Cal, M.; Brocca, A.; Carta, M.; Giavarina, D.; Ankawi, G.; Passannante, A.; Yun, X.; Biolo, G.; Ronco, C., Subclinical Contrast-Induced Acute Kidney Injury in Patients Undergoing Cerebral Computed Tomography. Cardiorenal Med 2020, 10, (2), 125-136. [CrossRef]
- Pavkovic, M.; Vaidya, V. S., MicroRNAs and drug-induced kidney injury. Pharmacol Ther 2016, 163, 48-57. [CrossRef]
- Keller, A.; Groger, L.; Tschernig, T.; Solomon, J.; Laham, O.; Schaum, N.; Wagner, V.; Kern, F.; Schmartz, G. P.; Li, Y.; Borcherding, A.; Meier, C.; Wyss-Coray, T.; Meese, E.; Fehlmann, T.; Ludwig, N., miRNATissueAtlas2: an update to the human miRNA tissue atlas. Nucleic Acids Res 2022, 50, (D1), D211-D221. [CrossRef]
- Mitchell, P. S.; Parkin, R. K.; Kroh, E. M.; Fritz, B. R.; Wyman, S. K.; Pogosova-Agadjanyan, E. L.; Peterson, A.; Noteboom, J.; O’Briant, K. C.; Allen, A.; Lin, D. W.; Urban, N.; Drescher, C. W.; Knudsen, B. S.; Stirewalt, D. L.; Gentleman, R.; Vessella, R. L.; Nelson, P. S.; Martin, D. B.; Tewari, M., Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008, 105, (30), 10513-8.
- Aguado-Fraile, E.; Ramos, E.; Conde, E.; Rodriguez, M.; Martin-Gomez, L.; Lietor, A.; Candela, A.; Ponte, B.; Liano, F.; Garcia-Bermejo, M. L., A Pilot Study Identifying a Set of microRNAs As Precise Diagnostic Biomarkers of Acute Kidney Injury. PLoS One 2015, 10, (6), e0127175. [CrossRef]
- Chen, H. H.; Lan, Y. F.; Li, H. F.; Cheng, C. F.; Lai, P. F.; Li, W. H.; Lin, H., Urinary miR-16 transactivated by C/EBPbeta reduces kidney function after ischemia/reperfusion-induced injury. Sci Rep 2016, 6, 27945. [CrossRef]
- Lorenzen, J. M.; Kielstein, J. T.; Hafer, C.; Gupta, S. K.; Kumpers, P.; Faulhaber-Walter, R.; Haller, H.; Fliser, D.; Thum, T., Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol 2011, 6, (7), 1540-6. [CrossRef]
- Huo, R.; Dai, M.; Fan, Y.; Zhou, J. Z.; Li, L.; Zu, J., [Predictive value of miRNA-29a and miRNA-10a-5p for 28-day mortality in patients with sepsis-induced acute kidney injury]. Nan Fang Yi Ke Da Xue Xue Bao 2017, 37, (5), 646-651. [CrossRef]
- Zhang, J.; Wang, C. J.; Tang, X. M.; Wei, Y. K., Urinary miR-26b as a potential biomarker for patients with sepsis-associated acute kidney injury: a Chinese population-based study. Eur Rev Med Pharmacol Sci 2018, 22, (14), 4604-4610.
- Lan, Y. F.; Chen, H. H.; Lai, P. F.; Cheng, C. F.; Huang, Y. T.; Lee, Y. C.; Chen, T. W.; Lin, H., MicroRNA-494 reduces ATF3 expression and promotes AKI. J Am Soc Nephrol 2012, 23, (12), 2012-23. [CrossRef]
- Wu, R.; Wu, Y.; Yang, L.; Deng, Y.; Chen, D., [Value of serum level of microRNA-494 in predicting prognosis of acute renal injury after cardiac surgery in children]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2019, 31, (12), 1469-1473.
- Lin, Y.; Ding, Y.; Song, S.; Li, M.; Wang, T.; Guo, F., Expression patterns and prognostic value of miR-210, miR-494, and miR-205 in middle-aged and old patients with sepsis-induced acute kidney injury. Bosn J Basic Med Sci 2019, 19, (3), 249-256. [CrossRef]
- Zhang, H.; Che, L.; Wang, Y.; Zhou, H.; Gong, H.; Man, X.; Zhao, Q., Deregulated microRNA-22-3p in patients with sepsis-induced acute kidney injury serves as a new biomarker to predict disease occurrence and 28-day survival outcomes. Int Urol Nephrol 2021, 53, (10), 2107-2116. [CrossRef]
- Ramachandran, K.; Saikumar, J.; Bijol, V.; Koyner, J. L.; Qian, J.; Betensky, R. A.; Waikar, S. S.; Vaidya, V. S., Human miRNome profiling identifies microRNAs differentially present in the urine after kidney injury. Clin Chem 2013, 59, (12), 1742-52. [CrossRef]
- Gutierrez-Escolano, A.; Santacruz-Vazquez, E.; Gomez-Perez, F., Dysregulated microRNAs involved in contrast-induced acute kidney injury in rat and human. Ren Fail 2015, 37, (9), 1498-506. [CrossRef]
- Sun, S. Q.; Zhang, T.; Ding, D.; Zhang, W. F.; Wang, X. L.; Sun, Z.; Hu, L. H.; Qin, S. Y.; Shen, L. H.; He, B., Circulating MicroRNA-188, -30a, and -30e as Early Biomarkers for Contrast-Induced Acute Kidney Injury. J Am Heart Assoc 2016, 5, (8). [CrossRef]
- Zou, Y. F.; Wen, D.; Zhao, Q.; Shen, P. Y.; Shi, H.; Zhao, Q.; Chen, Y. X.; Zhang, W., Urinary MicroRNA-30c-5p and MicroRNA-192-5p as potential biomarkers of ischemia-reperfusion-induced kidney injury. Exp Biol Med (Maywood) 2017, 242, (6), 657-667. [CrossRef]
- Zhang, L.; Xu, Y.; Xue, S.; Wang, X.; Dai, H.; Qian, J.; Ni, Z.; Yan, Y., Implications of dynamic changes in miR-192 expression in ischemic acute kidney injury. Int Urol Nephrol 2017, 49, (3), 541-550. [CrossRef]
- Liu, Z.; Yang, D.; Gao, J.; Xiang, X.; Hu, X.; Li, S.; Wu, W.; Cai, J.; Tang, C.; Zhang, D.; Dong, Z., Discovery and validation of miR-452 as an effective biomarker for acute kidney injury in sepsis. Theranostics 2020, 10, (26), 11963-11975. [CrossRef]
- Aomatsu, A.; Kaneko, S.; Yanai, K.; Ishii, H.; Ito, K.; Hirai, K.; Ookawara, S.; Kobayashi, Y.; Sanui, M.; Morishita, Y., MicroRNA expression profiling in acute kidney injury. Transl Res 2022, 244, 1-31. [CrossRef]
- Saikumar, J.; Hoffmann, D.; Kim, T. M.; Gonzalez, V. R.; Zhang, Q.; Goering, P. L.; Brown, R. P.; Bijol, V.; Park, P. J.; Waikar, S. S.; Vaidya, V. S., Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol Sci 2012, 129, (2), 256-67. [CrossRef]
- Kang, Z.; Li, Z.; Huang, P.; Luo, J.; Liu, P.; Wang, Y.; Xia, T.; Zhou, Y., Remote ischemic preconditioning upregulates microRNA-21 to protect the kidney in children with congenital heart disease undergoing cardiopulmonary bypass. Pediatr Nephrol 2018, 33, (5), 911-919. [CrossRef]
- Du, J.; Cao, X.; Zou, L.; Chen, Y.; Guo, J.; Chen, Z.; Hu, S.; Zheng, Z., MicroRNA-21 and risk of severe acute kidney injury and poor outcomes after adult cardiac surgery. PLoS One 2013, 8, (5), e63390. [CrossRef]
- Wu, S. Y.; Zhang, H.; Wu, W.; Wu, Y. Y., [Value of serum miR-21-3p in predicting acute kidney injury in children with sepsis]. Zhongguo Dang Dai Er Ke Za Zhi 2020, 22, (3), 269-273.
- Arvin, P.; Samimagham, H. R.; Montazerghaem, H.; Khayatian, M.; Mahboobi, H.; Ghadiri Soufi, F., Early detection of cardiac surgery-associated acute kidney injury by microRNA-21. Bratisl Lek Listy 2017, 118, (10), 626-631. [CrossRef]
- Gaede, L.; Liebetrau, C.; Blumenstein, J.; Troidl, C.; Dorr, O.; Kim, W. K.; Gottfried, K.; Voss, S.; Berkowitsch, A.; Walther, T.; Nef, H.; Hamm, C. W.; Mollmann, H., Plasma microRNA-21 for the early prediction of acute kidney injury in patients undergoing major cardiac surgery. Nephrol Dial Transplant 2016, 31, (5), 760-6. [CrossRef]
- Mousavi, M. Z.; Chen, H. Y.; Lee, K. L.; Lin, H.; Chen, H. H.; Lin, Y. F.; Wong, C. S.; Li, H. F.; Wei, P. K.; Cheng, J. Y., Urinary micro-RNA biomarker detection using capped gold nanoslit SPR in a microfluidic chip. Analyst 2015, 140, (12), 4097-104. [CrossRef]
- Khwaja, A., KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 2012, 120, (4), c179-84. [CrossRef]
- Tsuji, K.; Kitamura, S.; Sang, Y.; Fukushima, K.; Wada, J., Adult kidney stem/progenitor cells contribute to regeneration through the secretion of trophic factors. Stem Cell Res 2020, 46, 101865. [CrossRef]
- Toyohara, T.; Mae, S.; Sueta, S.; Inoue, T.; Yamagishi, Y.; Kawamoto, T.; Kasahara, T.; Hoshina, A.; Toyoda, T.; Tanaka, H.; Araoka, T.; Sato-Otsubo, A.; Takahashi, K.; Sato, Y.; Yamaji, N.; Ogawa, S.; Yamanaka, S.; Osafune, K., Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice. Stem Cells Transl Med 2015, 4, (9), 980-92. [CrossRef]
- Kinomura, M.; Kitamura, S.; Tanabe, K.; Ichinose, K.; Hirokoshi, K.; Takazawa, Y.; Kitayama, H.; Nasu, T.; Sugiyama, H.; Yamasaki, Y.; Sugaya, T.; Maeshima, Y.; Makino, H., Amelioration of cisplatin-induced acute renal injury by renal progenitor-like cells derived from the adult rat kidney. Cell Transplant 2008, 17, (1-2), 143-58. [CrossRef]
- Tsuji, K.; Kitamura, S.; Wada, J., Immunomodulatory and Regenerative Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Renal Diseases. Int J Mol Sci 2020, 21, (3). [CrossRef]
- Collino, F.; Bruno, S.; Incarnato, D.; Dettori, D.; Neri, F.; Provero, P.; Pomatto, M.; Oliviero, S.; Tetta, C.; Quesenberry, P. J.; Camussi, G., AKI Recovery Induced by Mesenchymal Stromal Cell-Derived Extracellular Vesicles Carrying MicroRNAs. J Am Soc Nephrol 2015, 26, (10), 2349-60. [CrossRef]
- Mima, A., Hypoxia-inducible factor-prolyl hydroxylase inhibitors for renal anemia in chronic kidney disease: Advantages and disadvantages. Eur J Pharmacol 2021, 912, 174583. [CrossRef]
- Shu, S.; Wang, Y.; Zheng, M.; Liu, Z.; Cai, J.; Tang, C.; Dong, Z., Hypoxia and Hypoxia-Inducible Factors in Kidney Injury and Repair. Cells 2019, 8, (3). [CrossRef]
- Song, N.; Zhang, T.; Xu, X.; Lu, Z.; Yu, X.; Fang, Y.; Hu, J.; Jia, P.; Teng, J.; Ding, X., miR-21 Protects Against Ischemia/Reperfusion-Induced Acute Kidney Injury by Preventing Epithelial Cell Apoptosis and Inhibiting Dendritic Cell Maturation. Front Physiol 2018, 9, 790. [CrossRef]
- Wei, Q.; Sun, H.; Song, S.; Liu, Y.; Liu, P.; Livingston, M. J.; Wang, J.; Liang, M.; Mi, Q. S.; Huo, Y.; Nahman, N. S.; Mei, C.; Dong, Z., MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury. J Clin Invest 2018, 128, (12), 5448-5464. [CrossRef]
- Wei, Q.; Liu, Y.; Liu, P.; Hao, J.; Liang, M.; Mi, Q. S.; Chen, J. K.; Dong, Z., MicroRNA-489 Induction by Hypoxia-Inducible Factor-1 Protects against Ischemic Kidney Injury. J Am Soc Nephrol 2016, 27, (9), 2784-96. [CrossRef]
- Wei, Q.; Bhatt, K.; He, H. Z.; Mi, Q. S.; Haase, V. H.; Dong, Z., Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. J Am Soc Nephrol 2010, 21, (5), 756-61. [CrossRef]
- Wei, W.; Yao, Y. Y.; Bi, H. Y.; Zhai, Z.; Gao, Y., miR-21 protects against lipopolysaccharide-stimulated acute kidney injury and apoptosis by targeting CDK6. Ann Transl Med 2020, 8, (6), 303. [CrossRef]
- Jia, P.; Pan, T.; Xu, S.; Fang, Y.; Song, N.; Guo, M.; Liang, Y.; Xu, X.; Ding, X., Depletion of miR-21 in dendritic cells aggravates renal ischemia-reperfusion injury. FASEB J 2020, 34, (9), 11729-11740. [CrossRef]
- Li, Z.; Deng, X.; Kang, Z.; Wang, Y.; Xia, T.; Ding, N.; Yin, Y., Elevation of miR-21, through targeting MKK3, may be involved in ischemia pretreatment protection from ischemia-reperfusion induced kidney injury. J Nephrol 2016, 29, (1), 27-36. [CrossRef]
- Liu, X.; Hong, Q.; Wang, Z.; Yu, Y.; Zou, X.; Xu, L., MiR-21 inhibits autophagy by targeting Rab11a in renal ischemia/reperfusion. Exp Cell Res 2015, 338, (1), 64-9. [CrossRef]
- Tang, C. R.; Luo, S. G.; Lin, X.; Wang, J.; Liu, Y., Silenced miR-21 inhibits renal interstitial fibrosis via targeting ERK1/2 signaling pathway in mice. Eur Rev Med Pharmacol Sci 2019, 23, (3 Suppl), 110-116.
- Lin, Z.; Liu, Z.; Wang, X.; Qiu, C.; Zheng, S., MiR-21-3p Plays a Crucial Role in Metabolism Alteration of Renal Tubular Epithelial Cells during Sepsis Associated Acute Kidney Injury via AKT/CDK2-FOXO1 Pathway. Biomed Res Int 2019, 2019, 2821731. [CrossRef]
- Gu, D.; Zou, X.; Ju, G.; Zhang, G.; Bao, E.; Zhu, Y., Mesenchymal Stromal Cells Derived Extracellular Vesicles Ameliorate Acute Renal Ischemia Reperfusion Injury by Inhibition of Mitochondrial Fission through miR-30. Stem Cells Int 2016, 2016, 2093940. [CrossRef]
- Zhang, C.; Yu, S.; Zheng, B.; Liu, D.; Wan, F.; Ma, Y.; Wang, J.; Gao, Z.; Shan, Z., miR-30c-5p Reduces Renal Ischemia-Reperfusion Involving Macrophage. Med Sci Monit 2019, 25, 4362-4369. [CrossRef]
- Zhang, Y.; Li, C.; Guan, C.; Zhou, B.; Wang, L.; Yang, C.; Zhen, L.; Dai, J.; Zhao, L.; Jiang, W.; Xu, Y., MiR-181d-5p Targets KLF6 to Improve Ischemia/Reperfusion-Induced AKI Through Effects on Renal Function, Apoptosis, and Inflammation. Front Physiol 2020, 11, 510. [CrossRef]
- Huang, S. J.; Huang, J.; Yan, Y. B.; Qiu, J.; Tan, R. Q.; Liu, Y.; Tian, Q.; Guan, L.; Niu, S. S.; Zhang, Y.; Xi, Z.; Xiang, Y.; Gong, Q., The renoprotective effect of curcumin against cisplatin-induced acute kidney injury in mice: involvement of miR-181a/PTEN axis. Ren Fail 2020, 42, (1), 350-357. [CrossRef]
- Yi, H. X.; Jiang, S. Y.; Yu, L. H.; Chen, K.; Yang, Z. X.; Wu, Q., MicroRNA 181a-2-3p Alleviates the Apoptosis of Renal Tubular Epithelial Cells via Targeting GJB2 in Sepsis-Induced Acute Kidney Injury. Mol Cell Biol 2021, 41, (7), e0001621. [CrossRef]
- Zhang, M.; Zhi, D.; Lin, J.; Liu, P.; Wang, Y.; Duan, M., miR-181a-5p Inhibits Pyroptosis in Sepsis-Induced Acute Kidney Injury through Downregulation of NEK7. J Immunol Res 2022, 2022, 1825490. [CrossRef]
- Zhang, P.; Yi, L.; Qu, S.; Dai, J.; Li, X.; Liu, B.; Li, H.; Ai, K.; Zheng, P.; Qiu, S.; Li, Y.; Wang, Y.; Xiang, X.; Chai, X.; Dong, Z.; Zhang, D., The Biomarker TCONS_00016233 Drives Septic AKI by Targeting the miR-22-3p/AIFM1 Signaling Axis. Mol Ther Nucleic Acids 2020, 19, 1027-1042. [CrossRef]
- Zhang, J.; Chen, Q.; Dai, Z.; Pan, H., miR-22 alleviates sepsis-induced acute kidney injury via targeting the HMGB1/TLR4/NF-kappaB signaling pathway. Int Urol Nephrol 2023, 55, (2), 409-421. [CrossRef]
- Ma, J.; Li, Y. T.; Zhang, S. X.; Fu, S. Z.; Ye, X. Z., MiR-590-3p Attenuates Acute Kidney Injury by Inhibiting Tumor Necrosis Factor Receptor-Associated Factor 6 in Septic Mice. Inflammation 2019, 42, (2), 637-649. [CrossRef]
- Chen, Y.; Zhang, C.; Du, Y.; Yang, X.; Liu, M.; Yang, W.; Lei, G.; Wang, G., Exosomal transfer of microRNA-590-3p between renal tubular epithelial cells after renal ischemia-reperfusion injury regulates autophagy by targeting TRAF6. Chin Med J (Engl) 2022, 135, (20), 2467-2477. [CrossRef]
- Ding, C.; Dou, M.; Wang, Y.; Li, Y.; Wang, Y.; Zheng, J.; Li, X.; Xue, W.; Ding, X.; Tian, P., miR-124/IRE-1alpha affects renal ischemia/reperfusion injury by regulating endoplasmic reticulum stress in renal tubular epithelial cells. Acta Biochim Biophys Sin (Shanghai) 2020, 52, (2), 160-167. [CrossRef]
- Ke, J.; Zhao, F.; Luo, Y.; Deng, F.; Wu, X., MiR-124 Negatively Regulated PARP1 to Alleviate Renal Ischemia-reperfusion Injury by Inhibiting TNFalpha/RIP1/RIP3 Pathway. Int J Biol Sci 2021, 17, (8), 2099-2111. [CrossRef]
- Hao, J.; Wei, Q.; Mei, S.; Li, L.; Su, Y.; Mei, C.; Dong, Z., Induction of microRNA-17-5p by p53 protects against renal ischemia-reperfusion injury by targeting death receptor 6. Kidney Int 2017, 91, (1), 106-118. [CrossRef]
- Chen, S.; Yao, Y.; Lin, F.; Bian, F.; Zhu, C.; Jiang, G., MiR-424 is over-expressed and attenuates ischemia-reperfusion kidney injury via p53 and death receptor 6 pathway. Am J Transl Res 2019, 11, (4), 1965-1979.
- Vinas, J. L.; Burger, D.; Zimpelmann, J.; Haneef, R.; Knoll, W.; Campbell, P.; Gutsol, A.; Carter, A.; Allan, D. S.; Burns, K. D., Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury. Kidney Int 2016, 90, (6), 1238-1250. [CrossRef]
- Qin, Y.; Wang, G.; Peng, Z., MicroRNA-191-5p diminished sepsis-induced acute kidney injury through targeting oxidative stress responsive 1 in rat models. Biosci Rep 2019, 39, (8). [CrossRef]
- Zheng, G.; Qu, H.; Li, F.; Ma, W.; Yang, H., Propofol attenuates sepsis-induced acute kidney injury by regulating miR-290-5p/CCL-2 signaling pathway. Braz J Med Biol Res 2018, 51, (11), e7655. [CrossRef]
- Li, X. Y.; Zhang, K.; Jiang, Z. Y.; Cai, L. H., MiR-204/miR-211 downregulation contributes to candidemia-induced kidney injuries via derepression of Hmx1 expression. Life Sci 2014, 102, (2), 139-44. [CrossRef]
- Xu, Y.; Jiang, W.; Zhong, L.; Li, H.; Bai, L.; Chen, X.; Lin, Y.; Zheng, D., miR-195-5p alleviates acute kidney injury through repression of inflammation and oxidative stress by targeting vascular endothelial growth factor A. Aging (Albany NY) 2020, 12, (11), 10235-10245. [CrossRef]
- He, X.; Wen, Y.; Wang, Q.; Wang, Y.; Zhang, G.; Wu, J.; Li, Z.; Wen, J., Apigenin Nanoparticle Attenuates Renal Ischemia/Reperfusion Inflammatory Injury by Regulation of miR-140-5p/CXCL12/NF-kappaB Signaling Pathway. J Biomed Nanotechnol 2021, 17, (1), 64-77. [CrossRef]
- Liao, W.; Fu, Z.; Zou, Y.; Wen, D.; Ma, H.; Zhou, F.; Chen, Y.; Zhang, M.; Zhang, W., Corrigendum to “MicroRNA-140-5p attenuated oxidative stress in Cisplatin induced acute kidney injury by activating Nrf2/ARE pathway through a Keap1-independent mechanism” [Exp. Cell Res. (2017) 292-302]. Exp Cell Res 2017, 361, (1), 199. [CrossRef]
- Wang, Y.; Wang, D.; Jin, Z., miR-27a suppresses TLR4-induced renal ischemia-reperfusion injury. Mol Med Rep 2019, 20, (2), 967-976. [CrossRef]
- Tian, X.; Ji, Y.; Liang, Y.; Zhang, J.; Guan, L.; Wang, C., LINC00520 targeting miR-27b-3p regulates OSMR expression level to promote acute kidney injury development through the PI3K/AKT signaling pathway. J Cell Physiol 2019, 234, (8), 14221-14233. [CrossRef]
- Li, X.; Liao, J.; Su, X.; Li, W.; Bi, Z.; Wang, J.; Su, Q.; Huang, H.; Wei, Y.; Gao, Y.; Li, J.; Liu, L.; Wang, C., Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1. Theranostics 2020, 10, (21), 9561-9578. [CrossRef]
- Amrouche, L.; Desbuissons, G.; Rabant, M.; Sauvaget, V.; Nguyen, C.; Benon, A.; Barre, P.; Rabate, C.; Lebreton, X.; Gallazzini, M.; Legendre, C.; Terzi, F.; Anglicheau, D., MicroRNA-146a in Human and Experimental Ischemic AKI: CXCL8-Dependent Mechanism of Action. J Am Soc Nephrol 2017, 28, (2), 479-493. [CrossRef]
- Liu, F.; Lou, Y. L.; Wu, J.; Ruan, Q. F.; Xie, A.; Guo, F.; Cui, S. P.; Deng, Z. F.; Wang, Y., Upregulation of microRNA-210 regulates renal angiogenesis mediated by activation of VEGF signaling pathway under ischemia/perfusion injury in vivo and in vitro. Kidney Blood Press Res 2012, 35, (3), 182-91. [CrossRef]
- Bijkerk, R.; van Solingen, C.; de Boer, H. C.; van der Pol, P.; Khairoun, M.; de Bruin, R. G.; van Oeveren-Rietdijk, A. M.; Lievers, E.; Schlagwein, N.; van Gijlswijk, D. J.; Roeten, M. K.; Neshati, Z.; de Vries, A. A.; Rodijk, M.; Pike-Overzet, K.; van den Berg, Y. W.; van der Veer, E. P.; Versteeg, H. H.; Reinders, M. E.; Staal, F. J.; van Kooten, C.; Rabelink, T. J.; van Zonneveld, A. J., Hematopoietic microRNA-126 protects against renal ischemia/reperfusion injury by promoting vascular integrity. J Am Soc Nephrol 2014, 25, (8), 1710-22. [CrossRef]
- Yue, J.; Si, Y.; Zhu, T.; Yang, J.; Xu, X.; Fang, Y.; Fu, W., MicroRNA-187 Reduces Acute Ischemic Renal Podocyte Injury via Targeting Acetylcholinesterase. J Surg Res 2019, 244, 302-311. [CrossRef]
- Zhu, G.; Pei, L.; Lin, F.; Yin, H.; Li, X.; He, W.; Liu, N.; Gou, X., Exosomes from human-bone-marrow-derived mesenchymal stem cells protect against renal ischemia/reperfusion injury via transferring miR-199a-3p. J Cell Physiol 2019, 234, (12), 23736-23749. [CrossRef]
- Yuan, X.; Wang, X.; Chen, C.; Zhou, J.; Han, M., Bone mesenchymal stem cells ameliorate ischemia/reperfusion-induced damage in renal epithelial cells via microRNA-223. Stem Cell Res Ther 2017, 8, (1), 146. [CrossRef]
- Cao, J. Y.; Wang, B.; Tang, T. T.; Wen, Y.; Li, Z. L.; Feng, S. T.; Wu, M.; Liu, D.; Yin, D.; Ma, K. L.; Tang, R. N.; Wu, Q. L.; Lan, H. Y.; Lv, L. L.; Liu, B. C., Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics 2021, 11, (11), 5248-5266. [CrossRef]
- Sun, W.; Zhu, Q.; Yan, L.; Shao, F., Mesenchymal stem cells alleviate acute kidney injury via miR-107-mediated regulation of ribosomal protein S19. Ann Transl Med 2019, 7, (23), 765. [CrossRef]
- Wang, S.; Zhang, Z.; Wang, J.; Miao, H., MiR-107 induces TNF-alpha secretion in endothelial cells causing tubular cell injury in patients with septic acute kidney injury. Biochem Biophys Res Commun 2017, 483, (1), 45-51. [CrossRef]
- Zou, X.; Zhang, G.; Cheng, Z.; Yin, D.; Du, T.; Ju, G.; Miao, S.; Liu, G.; Lu, M.; Zhu, Y., Microvesicles derived from human Wharton’s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1. Stem Cell Res Ther 2014, 5, (2), 40. [CrossRef]
- Wu, L.; Rong, C.; Zhou, Q.; Zhao, X.; Zhuansun, X. M.; Wan, S.; Sun, M. M.; Wang, S. L., Bone Marrow Mesenchymal Stem Cells Ameliorate Cisplatin-Induced Renal Fibrosis via miR-146a-5p/Tfdp2 Axis in Renal Tubular Epithelial Cells. Front Immunol 2020, 11, 623693. [CrossRef]
- Wilflingseder, J.; Jelencsics, K.; Bergmeister, H.; Sunzenauer, J.; Regele, H.; Eskandary, F.; Reindl-Schwaighofer, R.; Kainz, A.; Oberbauer, R., miR-182-5p Inhibition Ameliorates Ischemic Acute Kidney Injury. Am J Pathol 2017, 187, (1), 70-79. [CrossRef]
- Li, H.; Ma, Y.; Chen, B.; Shi, J., miR-182 enhances acute kidney injury by promoting apoptosis involving the targeting and regulation of TCF7L2/Wnt/beta-catenins pathway. Eur J Pharmacol 2018, 831, 20-27. [CrossRef]
- Du, Y.; Ning, J. Z., MiR-182 Promotes Ischemia/Reperfusion-Induced Acute Kidney Injury in Rat by Targeting FoxO3. Urol Int 2021, 105, (7-8), 687-696. [CrossRef]
- Lee, C. G.; Kim, J. G.; Kim, H. J.; Kwon, H. K.; Cho, I. J.; Choi, D. W.; Lee, W. H.; Kim, W. D.; Hwang, S. J.; Choi, S.; Kim, S. G., Discovery of an integrative network of microRNAs and transcriptomics changes for acute kidney injury. Kidney Int 2014, 86, (5), 943-53. [CrossRef]
- Wang, J.; Li, H.; Qiu, S.; Dong, Z.; Xiang, X.; Zhang, D., MBD2 upregulates miR-301a-5p to induce kidney cell apoptosis during vancomycin-induced AKI. Cell Death Dis 2017, 8, (10), e3120. [CrossRef]
- Hao, J.; Lou, Q.; Wei, Q.; Mei, S.; Li, L.; Wu, G.; Mi, Q. S.; Mei, C.; Dong, Z., MicroRNA-375 Is Induced in Cisplatin Nephrotoxicity to Repress Hepatocyte Nuclear Factor 1-beta. J Biol Chem 2017, 292, (11), 4571-4582. [CrossRef]
- Liu, B.; Chai, Y.; Guo, W.; Lin, K.; Chen, S.; Liu, J.; Sun, G.; Chen, G.; Song, F.; He, Y.; Liang, Y.; Guo, Z.; Lei, L.; He, L.; Liu, L.; Tan, N.; Liu, Y.; Zhong, S.; Chen, J., MicroRNA-188 aggravates contrast-induced apoptosis by targeting SRSF7 in novel isotonic contrast-induced acute kidney injury rat models and renal tubular epithelial cells. Ann Transl Med 2019, 7, (16), 378. [CrossRef]
- Liu, X.; Zhu, N.; Zhang, B.; Xu, S. B., Long Noncoding RNA TCONS_00016406 Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Regulating the miR-687/PTEN Pathway. Front Physiol 2020, 11, 622. [CrossRef]
- Lorenzen, J. M.; Kaucsar, T.; Schauerte, C.; Schmitt, R.; Rong, S.; Hubner, A.; Scherf, K.; Fiedler, J.; Martino, F.; Kumarswamy, R.; Kolling, M.; Sorensen, I.; Hinz, H.; Heineke, J.; van Rooij, E.; Haller, H.; Thum, T., MicroRNA-24 antagonism prevents renal ischemia reperfusion injury. J Am Soc Nephrol 2014, 25, (12), 2717-29. [CrossRef]
- Zhang, T.; Xiang, L., Honokiol alleviates sepsis-induced acute kidney injury in mice by targeting the miR-218-5p/heme oxygenase-1 signaling pathway. Cell Mol Biol Lett 2019, 24, 15. [CrossRef]
- Chen, L.; Xu, J. Y.; Tan, H. B., LncRNA TUG1 regulates the development of ischemia-reperfusion mediated acute kidney injury through miR-494-3p/E-cadherin axis. J Inflamm (Lond) 2021, 18, (1), 12. [CrossRef]
- Lu, P.; Zhang, L.; Liu, T.; Fan, J. J.; Luo, X.; Zhu, Y. T., MiR-494-mediated Effects on the NF-kappaB Signaling Pathway Regulate Lipopolysaccharide-Induced Acute Kidney Injury in Mice. Immunol Invest 2022, 51, (5), 1372-1384. [CrossRef]
- Shen, Y.; Yu, J.; Jing, Y.; Zhang, J., MiR-106a aggravates sepsis-induced acute kidney injury by targeting THBS2 in mice model. Acta Cir Bras 2019, 34, (6), e201900602. [CrossRef]
- Chen, S.; Shan, J.; Niu, W.; Lin, F.; Liu, S.; Wu, P.; Sun, L.; Lu, W.; Jiang, G., Micro RNA-155 inhibitor as a potential therapeutic strategy for the treatment of acute kidney injury (AKI): a nanomedicine perspective. RSC Adv 2018, 8, (29), 15890-15896. [CrossRef]
- Zhang, Z.; Chen, H.; Zhou, L.; Li, C.; Lu, G.; Wang, L., Macrophage-derived exosomal miRNA-155 promotes tubular injury in ischemia-induced acute kidney injury. Int J Mol Med 2022, 50, (3). [CrossRef]
- Zhang, X. B.; Chen, X.; Li, D. J.; Qi, G. N.; Dai, Y. Q.; Gu, J.; Chen, M. Q.; Hu, S.; Liu, Z. Y.; Yang, Z. M., Inhibition of miR-155 Ameliorates Acute Kidney Injury by Apoptosis Involving the Regulation on TCF4/Wnt/beta-Catenin Pathway. Nephron 2019, 143, (2), 135-147. [CrossRef]
- Wang, Y.; Wu, X. Q.; Cai, J. R.; Ji, H. X.; Xu, T., SIRT7 silencing by miR-152-3p confers cell apoptosis and renal functional impairment induced by renal ischaemia/reperfusion injury. Int Urol Nephrol 2023, 55, (2), 367-376. [CrossRef]
- Ma, P.; Zhang, C.; Huo, P.; Li, Y.; Yang, H., A novel role of the miR-152-3p/ERRFI1/STAT3 pathway modulates the apoptosis and inflammatory response after acute kidney injury. J Biochem Mol Toxicol 2020, e22540. [CrossRef]
- Guo, Y.; Ni, J.; Chen, S.; Bai, M.; Lin, J.; Ding, G.; Zhang, Y.; Sun, P.; Jia, Z.; Huang, S.; Yang, L.; Zhang, A., MicroRNA-709 Mediates Acute Tubular Injury through Effects on Mitochondrial Function. J Am Soc Nephrol 2018, 29, (2), 449-461. [CrossRef]
- He, S. Y.; Wang, G.; Pei, Y. H.; Zhu, H. P., miR-34b-3p protects against acute kidney injury in sepsis mice via targeting ubiquitin-like protein 4A. Kaohsiung J Med Sci 2020, 36, (10), 817-824. [CrossRef]
- Bhatt, K.; Zhou, L.; Mi, Q. S.; Huang, S.; She, J. X.; Dong, Z., MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol Med 2010, 16, (9-10), 409-16. [CrossRef]
- Jiang, Z. J.; Zhang, M. Y.; Fan, Z. W.; Sun, W. L.; Tang, Y., Influence of lncRNA HOTAIR on acute kidney injury in sepsis rats through regulating miR-34a/Bcl-2 pathway. Eur Rev Med Pharmacol Sci 2019, 23, (8), 3512-3519.
- Liu, X. J.; Hong, Q.; Wang, Z.; Yu, Y. Y.; Zou, X.; Xu, L. H., MicroRNA-34a Suppresses Autophagy in Tubular Epithelial Cells in Acute Kidney Injury. Am J Nephrol 2015, 42, (2), 168-75. [CrossRef]
- Collier, J. B.; Schnellmann, R. G., Extracellular signal-regulated kinase 1/2 regulates NAD metabolism during acute kidney injury through microRNA-34a-mediated NAMPT expression. Cell Mol Life Sci 2020, 77, (18), 3643-3655. [CrossRef]
- Zhao, Y.; Lang, Y.; Zhang, M.; Liang, S.; Zhu, X.; Liu, Z., miR-125b Disrupts Mitochondrial Dynamics via Targeting Mitofusin 1 in Cisplatin-Induced Acute Kidney Injury. Kidney Dis (Basel) 2022, 8, (2), 137-147. [CrossRef]
- Shi, L.; Zhang, Y.; Xia, Y.; Li, C.; Song, Z.; Zhu, J., MiR-150-5p protects against septic acute kidney injury via repressing the MEKK3/JNK pathway. Cell Signal 2021, 86, 110101. [CrossRef]
- Ranganathan, P.; Jayakumar, C.; Tang, Y.; Park, K. M.; Teoh, J. P.; Su, H.; Li, J.; Kim, I. M.; Ramesh, G., MicroRNA-150 deletion in mice protects kidney from myocardial infarction-induced acute kidney injury. Am J Physiol Renal Physiol 2015, 309, (6), F551-8. [CrossRef]
- Guan, H.; Peng, R.; Mao, L.; Fang, F.; Xu, B.; Chen, M., Injured tubular epithelial cells activate fibroblasts to promote kidney fibrosis through miR-150-containing exosomes. Exp Cell Res 2020, 392, (2), 112007. [CrossRef]
- Zhou, X.; Zhao, S.; Li, W.; Ruan, Y.; Yuan, R.; Ning, J.; Jiang, K.; Xie, J.; Yao, X.; Li, H.; Li, C.; Rao, T.; Yu, W.; Cheng, F., Tubular cell-derived exosomal miR-150-5p contributes to renal fibrosis following unilateral ischemia-reperfusion injury by activating fibroblast in vitro and in vivo. Int J Biol Sci 2021, 17, (14), 4021-4033. [CrossRef]
- Zhu, X.; Li, W.; Li, H., miR-214 ameliorates acute kidney injury via targeting DKK3 and activating of Wnt/beta-catenin signaling pathway. Biol Res 2018, 51, (1), 31. [CrossRef]
- Sang, Z.; Dong, S.; Zhang, P.; Wei, Y., miR-214 ameliorates sepsis-induced acute kidney injury via PTEN/AKT/mTOR-regulated autophagy. Mol Med Rep 2021, 24, (4). [CrossRef]
- Yan, Y.; Ma, Z.; Zhu, J.; Zeng, M.; Liu, H.; Dong, Z., miR-214 represses mitofusin-2 to promote renal tubular apoptosis in ischemic acute kidney injury. Am J Physiol Renal Physiol 2020, 318, (4), F878-F887. [CrossRef]
- Guo, C.; Ye, F. X.; Jian, Y. H.; Liu, C. H.; Tu, Z. H.; Yang, D. P., MicroRNA-214-5p aggravates sepsis-related acute kidney injury in mice. Drug Dev Res 2022, 83, (2), 339-350. [CrossRef]
- Zhou, J.; Xiao, C.; Zheng, S.; Wang, Q.; Zhu, H.; Zhang, Y.; Wang, R., MicroRNA-214-3p aggravates ferroptosis by targeting GPX4 in cisplatin-induced acute kidney injury. Cell Stress Chaperones 2022, 27, (4), 325-336. [CrossRef]
- Yin, Q.; Zhao, Y. J.; Ni, W. J.; Tang, T. T.; Wang, Y.; Cao, J. Y.; Yin, D.; Wen, Y.; Li, Z. L.; Zhang, Y. L.; Jiang, W.; Zhang, Y.; Lu, X. Y.; Zhang, A. Q.; Gan, W. H.; Lv, L. L.; Liu, B. C.; Wang, B., MiR-155 deficiency protects renal tubular epithelial cells from telomeric and genomic DNA damage in cisplatin-induced acute kidney injury. Theranostics 2022, 12, (10), 4753-4766. [CrossRef]
- Thakur, S.; Sinhari, A.; Jain, P.; Jadhav, H. R., A perspective on oligonucleotide therapy: Approaches to patient customization. Front Pharmacol 2022, 13, 1006304. [CrossRef]
- Kulkarni, J. A.; Witzigmann, D.; Thomson, S. B.; Chen, S.; Leavitt, B. R.; Cullis, P. R.; van der Meel, R., The current landscape of nucleic acid therapeutics. Nat Nanotechnol 2021, 16, (6), 630-643.
- Yamakawa, K.; Nakano-Narusawa, Y.; Hashimoto, N.; Yokohira, M.; Matsuda, Y., Development and Clinical Trials of Nucleic Acid Medicines for Pancreatic Cancer Treatment. Int J Mol Sci 2019, 20, (17). [CrossRef]
- Lanford, R. E.; Hildebrandt-Eriksen, E. S.; Petri, A.; Persson, R.; Lindow, M.; Munk, M. E.; Kauppinen, S.; Orum, H., Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010, 327, (5962), 198-201. [CrossRef]
- Anastasiadou, E.; Seto, A. G.; Beatty, X.; Hermreck, M.; Gilles, M. E.; Stroopinsky, D.; Pinter-Brown, L. C.; Pestano, L.; Marchese, C.; Avigan, D.; Trivedi, P.; Escolar, D. M.; Jackson, A. L.; Slack, F. J., Cobomarsen, an Oligonucleotide Inhibitor of miR-155, Slows DLBCL Tumor Cell Growth In Vitro and In Vivo. Clin Cancer Res 2021, 27, (4), 1139-1149. [CrossRef]
- Yoo, B.; Ghosh, S. K.; Kumar, M.; Moore, A.; Yigit, M. V.; Medarova, Z., Design of nanodrugs for miRNA targeting in tumor cells. J Biomed Nanotechnol 2014, 10, (6), 1114-22. [CrossRef]
- Yigit, M. V.; Moore, A.; Medarova, Z., Magnetic nanoparticles for cancer diagnosis and therapy. Pharm Res 2012, 29, (5), 1180-8. [CrossRef]
- Ma, L.; Reinhardt, F.; Pan, E.; Soutschek, J.; Bhat, B.; Marcusson, E. G.; Teruya-Feldstein, J.; Bell, G. W.; Weinberg, R. A., Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 2010, 28, (4), 341-7. [CrossRef]
- Weissleder, R.; Lee, A. S.; Fischman, A. J.; Reimer, P.; Shen, T.; Wilkinson, R.; Callahan, R. J.; Brady, T. J., Polyclonal human immunoglobulin G labeled with polymeric iron oxide: antibody MR imaging. Radiology 1991, 181, (1), 245-9. [CrossRef]
- Hong, D. S.; Kang, Y. K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H. Y.; Brenner, A. J.; Park, K.; Lee, J. L.; Kim, T. Y.; Shin, S.; Becerra, C. R.; Falchook, G.; Stoudemire, J.; Martin, D.; Kelnar, K.; Peltier, H.; Bonato, V.; Bader, A. G.; Smith, S.; Kim, S.; O’Neill, V.; Beg, M. S., Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer 2020, 122, (11), 1630-1637. [CrossRef]
- Zhang, L.; Liao, Y.; Tang, L., MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res 2019, 38, (1), 53. [CrossRef]
- Beg, M. S.; Brenner, A. J.; Sachdev, J.; Borad, M.; Kang, Y. K.; Stoudemire, J.; Smith, S.; Bader, A. G.; Kim, S.; Hong, D. S., Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs 2017, 35, (2), 180-188. [CrossRef]
- van Zandwijk, N.; Pavlakis, N.; Kao, S. C.; Linton, A.; Boyer, M. J.; Clarke, S.; Huynh, Y.; Chrzanowska, A.; Fulham, M. J.; Bailey, D. L.; Cooper, W. A.; Kritharides, L.; Ridley, L.; Pattison, S. T.; MacDiarmid, J.; Brahmbhatt, H.; Reid, G., Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 2017, 18, (10), 1386-1396. [CrossRef]
- Kashtan, C., Multidisciplinary Management of Alport Syndrome: Current Perspectives. J Multidiscip Healthc 2021, 14, 1169-1180. [CrossRef]
- Lee, E. C.; Valencia, T.; Allerson, C.; Schairer, A.; Flaten, A.; Yheskel, M.; Kersjes, K.; Li, J.; Gatto, S.; Takhar, M.; Lockton, S.; Pavlicek, A.; Kim, M.; Chu, T.; Soriano, R.; Davis, S.; Androsavich, J. R.; Sarwary, S.; Owen, T.; Kaplan, J.; Liu, K.; Jang, G.; Neben, S.; Bentley, P.; Wright, T.; Patel, V., Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease. Nat Commun 2019, 10, (1), 4148. [CrossRef]
- Meng, W.; He, C.; Hao, Y.; Wang, L.; Li, L.; Zhu, G., Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv 2020, 27, (1), 585-598. [CrossRef]
- Tsuji, K.; Kitamura, S.; Wada, J., Mesenchymal stem cells-derived extracellular vesicles as ‘natural’ drug delivery system for tissue regeneration. Biocell 2022, 46, (4), 899-902. [CrossRef]
- Debacker, A. J.; Voutila, J.; Catley, M.; Blakey, D.; Habib, N., Delivery of Oligonucleotides to the Liver with GalNAc: From Research to Registered Therapeutic Drug. Mol Ther 2020, 28, (8), 1759-1771. [CrossRef]
- Kim, T.; Croce, C. M., MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med 2023. [CrossRef]
| miRNA | Subtype | Species | Etiology | Expression | Sample | Ref. |
|---|---|---|---|---|---|---|
| miR-16 | miR-16 | Human/mice | - | Up | Urine | [41] |
| miR-16 | Human | - | Down | Plasma | [42] | |
| miR-16-5p | Human | - | Up | Urine | [62] | |
| miR-30 | miR-30a, c, e | Human/rats | Contrast | Up | Plasma | [50] |
| miR-30a, e | Human/rats | Contrast | Up | Plasma | [51] | |
| miR-30c-5p | Human | Cardiac surgery | Up | Urine | [52] | |
| miR-21 | miR-21 | Human | Cardiac surgery | Down | Serum/Urine | [60] |
| miR-21 | Human | Cardiac surgery | Up | Plasma/Urine | [58] | |
| miR-21 | Human | Cardiac surgery | Up | Serum/Urine | [57] | |
| miR-21-3p | Human | Sepsis | UP | Serum | [59] | |
| miR-21 | Human | - | Up | Urine | [49] | |
| miR-21 | Human | - | Up | Urine | [56] | |
| miR-188 | miR-188 | Human | Contrast | Up | Plasma | [51] |
| miR-22 | miR-22-3p | Human | Sepsis | Down | Serum/Urine | [48] |
| miR-29 | miR-29a | Human | Sepsis | Up | Serum | [43] |
| miR-26 | miR-26b | Human | Sepsis | Up | Urine | [44] |
| miR-155 | miR-155 | Human | - | Down | Urine | [56] |
| miR-10 | miR-10a-5p | Human | Sepsis | Up | Serum | [43] |
| miR-192 | miR-192-5p | Human | Cardiac surgery | Up | Urine | [52] |
| miR-192 | Human/rats | Cardiac surgery | Up | Plasma | [53] | |
| miR-200 | miR-200c | Human | - | Up | Urine | [49] |
| miR-210 | miR-210 | Human | - | Up | Plasma | [42] |
| miR-210 | Human | Sepsis | Up | Plasma | [47] | |
| miR-423 | miR-423 | Human | - | Up | Urine | [49] |
| miR-452 | miR-452 | Human | Sepsis | Up | Serum/Urine | [54] |
| miR-494 | miR-494 | Human/mice | - | Up | Urine | [45] |
| miR-494 | Human | Cardiac surgery | Up | Serum | [46] | |
| miR-494 | Human | Sepsis | Up | Plasma | [47] | |
| miR-5100 | miR-5100 | Human | - | Down | Serum | [55] |
| miR-320 | miR-320 | Human | - | Down | Plasma | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
