Submitted:
16 August 2023
Posted:
17 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Campylobacter Isolation
2.2.1. Culture Method
2.2.2. Filtration Technique
2.3. Identification of Campylobacter Species
2.3.1. Phenotypical Identification
2.3.2. Molecular Identification
2.4. Antibiotic Susceptibility Testing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ray, L.C.; Collins, J.P.; Griffin, P.M.; Shah, H.J. , Boyle, M.M.; Cieslak, P.R.; Dunn, J.; Lathrop, S.; McGuire, S.; Rissman, T.; Walter, E.J.S.; Smith, K.; Tobin-D’Angelo, M.; Wymore, K.; Kufel, J.Z.; Wolpert, B.J.; Tauxe, R.; Payne, D.C. Decreased Incidence of Infections Caused by Pathogens Transmitted Commonly Through Food During the COVID-19 Pandemic — Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2017–2020. MMWR. 2021, 70, 1332–1336. [Google Scholar] [PubMed]
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control), 2022. The European Union One Health 2021 Zoonoses Report. EFSA Journal 2022, 20, 7666. [Google Scholar]
- Hlashwayo, D.F.; Sigaúque, B.; Noormahomed, E.V.; Afonso, S.M.S.; Mandomando, I.M.; Bila, C.G. A systematic review and meta-analysis reveal that Campylobacter spp. and antibiotic resistance are widespread in humans in sub-Saharan Africa. PLoS One. 2021, 16, e0245951. [Google Scholar] [CrossRef] [PubMed]
- Paintsil, E.K.; Ofori, L.A.; Adobea, S.; Akenten, C.W.; Phillips, R.O.; Maiga-Ascofare, O.; Lamshöft, M.; May, J.; Danso, K.O.; Krumkamp, R.; Dekker, D. Prevalence and antibiotic resistance in Campylobacter spp. isolated from humans and food-producing animals in West Africa: A systematic review and meta-analysis. Pathogens. 2022, 11, 140. [Google Scholar] [CrossRef]
- Wada, Y.; Abdul-Rahman, Z. Human campylobacteriosis in Southeast Asia: A meta-analysis and systematic review. Int. J. Infec. Dis. 2022, 116, S1–S130. [Google Scholar] [CrossRef]
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global epidemiology of Campylobacter infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Lee, S.A; Xue, J.; Riordan, S.M.; Zhang, L. Global epidemiology of campylobacteriosis and the impact of COVID-19. Front. Cell. Infect. Microbiol. 2022, 12, 979055. [Google Scholar] [CrossRef]
- Lastovica, A.J. Emerging Campylobacter spp.: the tip of the iceberg. Clin. Microbiol. Newsl. 2006, 28, 7. [Google Scholar] [CrossRef]
- Hatanaka, N.; Shimizu, A.; Somroop, S.; Li, Y.; Asakura, M.; Nagita, A.; Awasthi, S.P.; Hinenoya, A.; Yamasaki, S. High Prevalence of Campylobacter ureolyticus in stool specimens of children with diarrhea in Japan. Jpn. J. Infect. Dis. 2017, 70, 455–457. [Google Scholar] [CrossRef]
- Liu, F.; Ma, R.; Wang, Y.; Zhang, L. The clinical importance of Campylobacter concisus and other human hosted Campylobacter species. Front. Cell. Infect. Microbiol. 2018, 8, 243. [Google Scholar] [CrossRef]
- Liu, F.; Ma, R.; Tay, C.Y.A.; Octavia, S.; Lan, R.; Chung, H.K.L.; Riordan, S.M.; Grimm, M.C.; Leong, R.W.; Tanaka, M.M.; Connor, S.; Zhang, L. Genomic analysis of oral Campylobacter concisus strains identified a potential bacterial molecular marker associated with active Crohn's disease. Emerg. Microbes Infect. 2018, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Ongen, B.; Ilktac, M.; Aydin, A.S.; Nazik, H. 2011. Enteropathogenic bacteria detected in clinical stool samples in a ten year period in Istanbul, Turkey. In: Proceedings of the 4th Eurasia Congress of Infectious Diseases. Sarajevo, Bosnia and Herzegovina. 01--05 June 2011. 05 June.
- Lastovica, A.J.; Roux, E.L. Efficient isolation of campylobacteria from stools. J. Clin. Microbiol. 2000, 38, 2798–2799. [Google Scholar] [CrossRef] [PubMed]
- Lindblom, G.B.; Sjögren, E.; Hansson-Westerberg, J.; Kaijser, B. Campylobacter upsaliensis, C. sputorum sputorum and C. concisus as common causes of diarrhoea in Swedish children. Scand. J. Infect. Dis. 1995, 27, 187–188. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.L.; Ejlertsen, T.; Engberg, J.; Nielsen, H. High incidence of Campylobacter concisus in gastroenteritis in North Jutland, Denmark: a population-based study. Clin. Microbiol. and Infect. 2013, 19, 445–450. [Google Scholar] [CrossRef]
- Tilmanne, A.; Martiny, D.; Hallin, M.; Cornelius, A.; Wautier, M.; Quach, C. Campylobacter concisus and acute gastroenteritis in children: lack of association. Pediatr. Infect. Dis. J. 2018, 37, e339–e41. [Google Scholar] [CrossRef]
- Nielsen, H.L.; Ejlertsen, T.; Nielsen, H. Polycarbonate filtration technique is noninferior to mCCDA for isolation of Campylobacter species from stool samples. Diagn. Microbiol. Infect. Dis. 2015, 83, 11–12. [Google Scholar] [CrossRef]
- Vandenberg, O.; Dediste, A.; Houf, K.; Ibekwem, S.; Souayah, H.; Cadranel, S.; Douat, N.; Zissis, G.; Butzler, J.P.; Vandamme, P. Arcobacter species in humans. Emerg. Infect. Dis. 2004, 10, 863–867. [Google Scholar] [CrossRef]
- Van Etterijck, R.; Breynaert, J.; Revets, H.; Devreker, T.; Vandenplas, Y.; Vandamme, P.; Lauwers, S. Isolation of Campylobacter concisus from feces of children with and without diarrhea. J. Clin. Microbiol. 1996, 34, 2304–2306. [Google Scholar] [CrossRef]
- Lastovica, A.J.; Allos, BM. Clinical significance of Campylobacter and related species other than Campylobacter jejuni and Campylobacter coli. In Campylobacter, 3rd ed.; Nachamkin, C.S., Blaser, M., Eds.; ASM Press: Washington DC, USA, 2008; pp. 123–149. [Google Scholar]
- Fitzgerald, C.; Nachamkin, I. Campylobacter and Arcobacter. In Manual of Clinical Microbiology, 11th ed.; Jorgensen, J.H., Pfaller, M.A., Carroll, K.C., Funke, G., Eds.; Eds. ASM Press: Washington DC, USA, 2015; pp. 998–1012. [Google Scholar]
- Procop, G.W.; Church, D.L.; Hall, G.S.; Janda, W.M.; Koneman, E.W.; Schreckenberger, P.C.; Woods, Gl. Curved Gram-negative Bacilli and oxidase-Positive Fermenters. In Koneman’s Color Atlas and Textbook of Diagnostic Microbiology, 7th ed.; Wolters Kluwer Health: Philadelphia; USA, 2017. pp. 432–42.
- Linton, D.; Owen, R.J.; Stanley, J. Rapid identification by PCR of the genus Campylobacter and of five Campylobacter species enteropathogenic for man and animals. Res. Microbiol. 1996; 147, 707-718.
- Lynch, Ó.A.; Cagney, C.; McDowell, D.A.; Duffy, G. Occurrence of fastidious Campylobacter spp. in fresh meat and poultry using an adapted cultural protocol. Int. J. Food Microbiol. 2011, 150, 171–177. [Google Scholar] [CrossRef]
- Klena, J.D.; Parker, C.T.; Knibb, K.; Ibbitt, J.C.; Devane, P.M.; Horn, S.T.; Miller, W.G.; Konkel, M.E. Differentiation of Campylobacter coli, Campylobacter jejuni, Campylobacter lari and Campylobacter upsaliensis by a multiplex PCR developed from the nucleotide sequence of the lipid A gene lpxA. J. Clin. Microbiol. 2004, 42, 5549–5557. [Google Scholar] [CrossRef]
- Bastyns, K.; Chapelle, S.; Vandamme, P.; Goossens, H.; De Wachter, R. Specific detection of Campylobacter concisus by PCR amplification of 23S rDNA areas. Mol. Cell. Probes 1995, 9, 247–250. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019. http://www.eucast.org.
- Linton, D.; Lawson, A.J.; Owen, R.J.; Stanley, J. PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples. J. Clin. Microbiol. 1997, 35, 2568–2572. [Google Scholar] [CrossRef] [PubMed]
- Ilktac, M.; Ongen, B. Molecular typing of Campylobacter jejuni and Campylobacter coli of human strains isolated in Turkey over an eight-year Period. Clin. Lab, 2020; 66. [Google Scholar]
- Kayman, T.; Abay, S.; Hizlisoy, H. Identification of Campylobacter spp. isolates with phenotypic methods and multiplex polymerase chain reaction and their antibiotic susceptibilities. Mikrobiyol. Bul. 2013, 47, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Bullman, S.; O'leary, J.; Corcoran, D.; Sleator, R.; Lucey, B. Molecular-based detection of non-culturable and emerging campylobacteria in patients presenting with gastroenteritis. Epidemiol. Infect. 2012, 140, 684–648. [Google Scholar] [CrossRef]
- Cornelius, A.; Chambers, S.; Aitken, J.; Brandt, S.M.; Horn, B.; On, S.L. Epsilonproteobacteria in humans, New Zealand. Emerg Infect Dis 2012, 18, 510–512. [Google Scholar] [CrossRef]
- Inglis, G.D.; Boras, V.F.; Houde, A. Enteric campylobacteria and RNA viruses associated with healthy and diarrheic humans in the Chinook health region of southwestern Alberta, Canada. J. Clin. Microbiol. 2011, 49, 209–219. [Google Scholar] [CrossRef]
- Collado, L.; Gutiérrez, M.; González, M.; Fernández, H. Assessment of the prevalence and diversity of emergent campylobacteria in human stool samples using a combination of traditional and molecular methods. Diagn. Microbiol. Infec. Dis. 2013, 75, 434–436. [Google Scholar] [CrossRef]
- Underwood, A.P.; Kaakoush, N.O.; Sodhi, N.; Merif, J.; Lee, W.S.; Riordan, S.M.; Mitchell, HM. Campylobacter concisus pathotypes are present at significant levels in patients with gastroenteritis. J. Med. Microbiol. 2016, 65, 219–226. [Google Scholar] [CrossRef]
- Nachamkin, I.; Nguyen, P. Isolation of Campylobacter species from stool samples by use of a filtration method: Assessment from a United States-based population. J. Clin. Microbiol. 2017, 55, 2204–2207. [Google Scholar] [CrossRef]
- Kaakoush, N.O.; Mitchell, H.M. Campylobacter concisus–a new player in intestinal disease. Front. Cell Infect. Microbiol. 2012, 2, 1–15. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), 2023. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA Journal 2023;21(3):7867, 232 pp.
- National Antimicrobial Resistance Monitoring System (NARMS) Now: Human Data. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC. 04/11/2023. https://www.cdc.gov/narmsnow. Accessed 12/04/2023.
- Ilktac, M.; Ongen, B.; Humphrey, T.J.; Williams, L.K. Molecular and phenotypical investigation of ciprofloxacin resistance among Campylobacter jejuni strains of human origin: high prevalence of resistance in Turkey. APMIS. 2020, 128, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Kayman, T.; Abay, S.; Aydin, F.; Sahin, O. Antibiotic resistance of Campylobacter jejuni isolates recovered from humans with diarrhoea in Turkey. J. Med. Microbiol. 2019, 68, 136–142. [Google Scholar] [CrossRef] [PubMed]
| Gene | Primer sequence | Amplicon size (bp) | Reference |
|---|---|---|---|
| Campylobacter genus | |||
| C412 F | 5'GGA TGA CAC TTT TCG GAG C 3' | 816 | [23] |
| C1288 R | 5'CAT TGT AGC ACG TGT GTC 3' | [23] | |
| Campylobacter spp. | |||
| IpxAC. coli | 5'AGA CAA ATA AGA GAG AAT CAG 3' | 391 | [25] |
| IpxAC. jejuni | 5'ACA ACT TGG TGA CGA TGT TGT A 3' | 331 | [25] |
| IpxAC. lari | 5'TRC CAA ATG TTA AAA TAG GCG A 3' | 296 | [25] |
| IpxAC. upsaliensis | 5'AAG TCG TAT ATT TTC YTA CGC TTG TGT G 3' | 206 | [25] |
| CmucLpxA | 5'GTA GGC AAA AAT GAG TAA AAT TCA TCA TA 3' | 381 | [William G. Miller, personal communications] |
| CsputLpxA | 5'TAC TAT TGG AGA TGG CGG AAA AGT ATT TAG C 3' | 222 | |
| CfetLpxA | 5'CGT TAG TTA CCG TCC AGA AGA AAA TAC A 3' | 162 | |
| ChelLpxA: | 5'GAC AAA TTC ATT CTA GTG CAG TGA TT 3' | 367 | |
| CcurvLpxA: | 5'GCA AGA GTC ATC GGA AAC ACG CAA ATA 3' | 242 | |
| IpxARKK2m (reverse) | 5'CAA TCA TGD GCD ATA TGA SAA TAH GCC AT 3' | [23] | |
| Con1 | 5'CAG TAT CGG CAA TTC GCT 3' | 306 | [26] |
| Con2 | 5'GAC AGT STC AAG GAT TTA CG 3' | [26] | |
| Muc1 | 5'ATG AGT AGC GAT AAT TCG G 3' | [26] | |
| HIP400F | 5'GAA GAG GGT TTG GGT GGT G'3 | 735 | [28] |
| HIP1134R | 5'AGC TAG CTT CGC ATA ATA ACT TG'3 | [28] |
| Quality Control Strain | Collection Number |
|---|---|
| C. jejuni | NCTC 1168 (RM1862) |
| C. coli | RM2228 |
| C. upsaliensis | RM3195 |
| C. lari | RM2100 |
| C. fetus | 82-40 (RM15492) |
| C. curvus | 525.92 (RM4077) |
| C. helveticus | ATCC 51209 (RM3228) |
| C. concisus | 13826 (RM5485) |
| C. mucosalis | ATCC 43264 (RM4114) |
| C. sputorum | CCUG 20703 (RM4121) |
| Gender1 | Hospital Status2 |
Macroscopical Analysis of the Stool Samples3 | Microscopical Analysis of the Stool Samples4 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F | M | O | I | W | WP | L | LP | WBP | WB | LB | PNL(+) | PNL (-) |
| 239(52.2) | 261(47.8) | 389(77.8) | 111(22.2) | 175(35) | 173(34.6) | 119(23.8) | 18(3.6) | 11(2.2) | 3(0.6) | 1(0.2) | 168(33.6) | 332(66.4) |
| Filtration | Butzler agar | mCCDA1 | mCCDA2 | |
|---|---|---|---|---|
| C. jejuni (n=21) | 21 | 20 | 18 | 18 |
| C. coli (n=9) | 9 | 9 | 7 | 6 |
| C. concisus (n=1) | 1 | 1 | 1 | 1 |
| Total (n=31) | 31 | 30 | 26 | 25 |
| Species | Oxidase | Catalase | Hippurate | Indoxyl acetate | Pyrazi-namidase | Nitrate | H2S strip | Urease | H2S TSI | 25 ⁰C | 42 ⁰C | 1% glycine | Amino-peptidase | Mac- Conkey | Cephalotin (R)1 | Nalidixic acid (R)1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C. jejuni (n=21) | 21 | 21 | 21 | 21 | 20 | 21 | 21 | - | - | - | 21 | 21 | - | - | 21 | 16 |
| C. coli (n=9) | 9 | 9 | 9 | 9 | 7 | 9 | 9 | - | - | - | 9 | 9 | - | - | 8 | 9 |
| C. concisus (n=1) | 1 | - | 1 | 1 | 1 | 1 | 1 | - | - | - | 1 | 1 | - | - | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).