Submitted:
15 August 2023
Posted:
17 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The impact of post-fire smoke on plant communities
3. Common physiological mechanisms of smoke compounds on plant physiology
4. Conclusion
References
- Pausas, J.G.; Verdú, M. Fire reduces morphospace occupation in plant communities. Ecol. 2008, 89, 2181–2186. [Google Scholar] [CrossRef] [PubMed]
- Archibald, S.; Lehmann, C.E.; Belcher, C.M.; Bond, W.J.; Bradstock, R.A.; Daniau, A.-L.; Dexter, K.G.; Forrestel, E.J.; Greve, M.; He, T. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 2018, 13, 033003. [Google Scholar] [CrossRef]
- Fox, S.; Sikes, B.A.; Brown, S.P.; Cripps, C.L.; Glassman, S.I.; Hughes, K.; Semenova-Nelsen, T.; Jumpponen, A. Fire as a driver of fungal diversity—A synthesis of current knowledge. Mycol. 2022, 114, 215–241. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennett, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F. Fire and biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol. 2014, 204, 55–65. [Google Scholar] [CrossRef] [PubMed]
- King, R.A.; Menges, E.S. Effects of heat and smoke on the germination of six Florida scrub species. S. Afr. J. Bot. 2018, 115, 223–230. [Google Scholar] [CrossRef]
- He, T.; Lamont, B.B.; Pausas, J.G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 2019, 94, 1983–2010. [Google Scholar] [CrossRef]
- Dayamba, S.D.; Tigabu, M.; Sawadogo, L.; Oden, P.C. Seed germination of herbaceous and woody species of the Sudanian savanna-woodland in response to heat shock and smoke. For. Ecol. Manag. 2008, 256, 462–470. [Google Scholar] [CrossRef]
- Penman, T.D.; Binns, D.; Allen, R.; Shiels, R.; Plummer, S. Germination responses of a dry sclerophyll forest soil-stored seedbank to fire related. cues. 2008. [Google Scholar]
- Zirondi, H.L.; Silveira, F.A.; Fidelis, A. Fire effects on seed germination: heat shock and smoke on permeable vs impermeable seed coats. Flora 2019, 253, 98–106. [Google Scholar] [CrossRef]
- Hodges, J.A.; Price, J.N.; Nicotra, A.B.; Neeman, T.; Guja, L.K. Smoke and heat accelerate and increase germination in fire-prone temperate grassy ecosystems. Ecosphere 2021, 12, e03851. [Google Scholar] [CrossRef]
- Khatoon, A.; Rehman, S.U.; Aslam, M.M.; Jamil, M.; Komatsu, S. Plant-derived smoke affects biochemical mechanism on plant growth and seed germination. Int. J. Mol. Sci. 2020, 21, 7760. [Google Scholar] [CrossRef] [PubMed]
- Chiwocha, S.D.; Dixon, K.W.; Flematti, G.R.; Ghisalberti, E.L.; Merritt, D.J.; Nelson, D.C.; Riseborough, J.-A.M.; Smith, S.M.; Stevens, J.C. Karrikins: a new family of plant growth regulators in smoke. Plant sci. 2009, 177, 252–256. [Google Scholar] [CrossRef]
- Waters, M.T.; Nelson, D.C. Karrikin perception and signalling. New Phyto. 2023, 237, 1525–1541. [Google Scholar] [CrossRef]
- Flematti, G.R.; Merritt, D.J.; Piggott, M.J.; Trengove, R.D.; Smith, S.M.; Dixon, K.W.; Ghisalberti, E.L. Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nat. Commun. 2011, 2, 360. [Google Scholar] [CrossRef]
- Tavşanoğlu, Ç.; Ergan, G.; Çatav, Ş.S.; Zare, G.; Küçükakyüz, K.; Özüdoğru, B. Multiple fire-related cues stimulate germination in Chaenorhinum rubrifolium (Plantaginaceae), a rare annual in the Mediterranean Basin. Seed Sci. Res. 2017, 27, 26–38. [Google Scholar] [CrossRef]
- Çatav, Ş.S.; Küçükakyüz, K.; Tavşanoğlu, Ç.; Pausas, J.G. Effect of fire-derived chemicals on germination and seedling growth in Mediterranean plant species. Basic Appl. Ecol. 2018, 30, 65–75. [Google Scholar] [CrossRef]
- Pošta, M.; Papenfus, H.B.; Light, M.E.; Beier, P.; Van Staden, J. Structure–activity relationships of N-and S-analogs of the seed germination inhibitor (3, 4, 5-trimethylfuran-2 (5 H)-one) for mode of action elucidation. Plant Growth Regu. 2017, 82, 47–53. [Google Scholar] [CrossRef]
- Gómez-González, S.; Sierra-Almeida, A.; Cavieres, L. Does plant-derived smoke affect seed germination in dominant woody species of the Mediterranean matorral of central Chile? For. Ecol. Manag. 2008, 255, 1510–1515. [Google Scholar] [CrossRef]
- Bączek-Kwinta, R.; Markowicz, M. The impact of plant-derived smoke on seed germination in the context of swailing. Grzesiak MT, Rzepka A., Hura T., Grzesiak S. Plant Functioning under Environmental Stress, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Cracow.
- Moreira, B.; Pausas, J. Shedding light through the smoke on the germination of Mediterranean Basin flora. S. Afr. J. Bot. 2018, 115, 244–250. [Google Scholar] [CrossRef]
- Wilson, C.R.; Lusk, C.H.; Campbell, D.I. The role of the peat seed bank in plant community dynamics of a fire-prone New Zealand restiad bog. Austral. Ecol. 2022, 47, 1515–1527. [Google Scholar] [CrossRef]
- Carthey, A.J.; Tims, A.; Geedicke, I.; Leishman, M.R. Broad-scale patterns in smoke-responsive germination from the south-eastern Australian flora. J. Veg. Sci. 2018, 29, 737–745. [Google Scholar] [CrossRef]
- Dayamba, S.D.; Sawadogo, L.; Tigabu, M.; Savadogo, P.; Zida, D.; Tiveau, D.; Oden, P.C. Effects of aqueous smoke solutions and heat on seed germination of herbaceous species of the Sudanian savanna-woodland in Burkina Faso. Flora-Morphol. Distrib. Func. Ecol. Plants 2010, 205, 319–325. [Google Scholar] [CrossRef]
- Zuloaga-Aguilar, S.; Briones, O.; Orozco-Segovia, A. Seed germination of montane forest species in response to ash, smoke and heat shock in Mexico. Acta Oecol. 2011, 37, 256–262. [Google Scholar] [CrossRef]
- Yusup, S.; Sundberg, S.; Ooi, M.K.; Zhang, M.; Sun, Z.; Rydin, H.; Wang, M.; Feng, L.; Chen, X.; Bu, Z.-J. Smoke promotes germination of peatland bryophyte spores. J. Exp. Bot. 2023, 74, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Huerta, S.; Fernández-García, V.; Marcos, E.; Suarez-Seoane, S.; Calvo, L. Physiological and regenerative plant traits explain vegetation regeneration under different severity levels in Mediterranean fire-prone ecosystems. For. 2021, 12, 149. [Google Scholar] [CrossRef]
- Lamont, B.B.; He, T.; Yan, Z. Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination. Biol. Rev. 2019, 94, 903–928. [Google Scholar] [CrossRef]
- Mackenzie, D.D.; Naeth, M.A. Effect of plant-derived smoke water and potassium nitrate on germination of understory boreal forest plants. Can. J. For. Res. 2019, 49, 1540–1547. [Google Scholar] [CrossRef]
- Daibes, L.F.; Martins, A.R.; Silveira, F.A.; Fidelis, A. Seed tolerance to post-fire temperature fluctuation of Cerrado legume shrubs with micromorphological implications. Flora 2021, 275, 151761. [Google Scholar] [CrossRef]
- Zhou, J.; Teixeira da Silva, J.A.; Ma, G. Effects of smoke water and karrikin on seed germination of 13 species growing in China. Cen. Euro. J. Bio. 2014, 9, 1108–1116. [Google Scholar] [CrossRef]
- Alahakoon, A.; Perera, G.; Merritt, D.; Turner, S.R.; Gama-Arachchige, N. Species-specific smoke effects on seed germination of plants from different habitats from Sri Lanka. Flora 2020, 263, 151530. [Google Scholar] [CrossRef]
- Mojzes, A.; Kalapos, T. Plant-derived smoke stimulates germination of four herbaceous species common in temperate regions of Europe. Plant Ecol. 2014, 215, 411–415. [Google Scholar] [CrossRef]
- Bączek-Kwinta, R. Swailing affects seed germination of plants of European bio-and agricenosis in a different way. Open Life Sci. 2017, 12, 62–75. [Google Scholar] [CrossRef]
- Wójcik, T.; Janicka, M. Current state and changes in Molinion meadows from Kostrze environs in Kraków. Ecol. Quest. 2016, 23. [Google Scholar] [CrossRef]
- Wójcik, T.; Kostrakiewicz-Gierałt, K.; Makuch-Pietraś, I. The effect of accidental burning on habitat conditions and species composition of Molinion caeruleae meadows. J. Nat. Conserv. 2022, 70, 126294. [Google Scholar] [CrossRef]
- Li, T.; Jeřábek, J.; Winkler, J.; Vaverková, M.D.; Zumr, D. Effects of prescribed fire on topsoil properties: A small-scale straw burning experiment. J. Hydrol. Hydromech. 2022, 70, 450–461. [Google Scholar] [CrossRef]
- Harper, A.R.; Doerr, S.H.; Santin, C.; Froyd, C.A.; Sinnadurai, P. Prescribed fire and its impacts on ecosystem services in the UK. Sci. Total Environ. 2018, 624, 691–703. [Google Scholar] [CrossRef]
- Li, S.; Ma, H.; Ooi, M.K. Fire-related cues significantly promote seed germination of some salt-tolerant species from non-fire-prone saline-alkaline grasslands in Northeast China. Plants 2021, 10, 2675. [Google Scholar] [CrossRef]
- Singh, S.; Uddin, M.; Khan, M.M.A.; Chishti, A.S.; Singh, S.; Bhat, U.H. The role of plant-derived smoke and karrikinolide in abiotic stress mitigation: An Omic approach. Plant Stress 2023, 100147. [Google Scholar] [CrossRef]
- De Lange, J.H.; Boucher, C. Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S. Afr. J. Bot. 1990, 56, 700–703. [Google Scholar] [CrossRef]
- Çatav, Ş.S.; Elgin, E.S.; Dağ, Ç.; Stark, J.L.; Küçükakyüz, K. NMR-based metabolomics reveals that plant-derived smoke stimulates root growth via affecting carbohydrate and energy metabolism in maize. Metabolomics 2018, 14, 1–11. [Google Scholar] [CrossRef]
- Meng, Y.; Shuai, H.; Luo, X.; Chen, F.; Zhou, W.; Yang, W.; Shu, K. Karrikins: regulators involved in phytohormone signaling networks during seed germination and seedling development. Front. plant sci. 2017, 7, 2021. [Google Scholar] [CrossRef]
- Yang, T.; Lian, Y.; Wang, C. Comparing and contrasting the multiple roles of butenolide plant growth regulators: strigolactones and karrikins in plant development and adaptation to abiotic stresses. Int. j. mol. sci. 2019, 20, 6270. [Google Scholar] [CrossRef] [PubMed]
- Stanga, J.P.; Smith, S.M.; Briggs, W.R.; Nelson, D.C. SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant physio. 2013, 163, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Ghebrehiwot, H.; Kulkarni, M.; Kirkman, K.; Van Staden, J. Smoke-water and a smoke-isolated butenolide improve germination and seedling vigour of Eragrostis Tef (Zucc.) Trotter under high temperature and low osmotic potential. J. Agron. Crop Sci. 2008, 194, 270–277. [Google Scholar] [CrossRef]
- Jain, N.; Kulkarni, M.G.; van Staden, J. A butenolide, isolated from smoke, can overcome the detrimental effects of extreme temperatures during tomato seed germination. Plant Growth Regul. 2006, 49, 263–267. [Google Scholar] [CrossRef]
- Wang, L.; Waters, M.T.; Smith, S.M. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment. New Phytol. 2018, 219, 605–618. [Google Scholar] [CrossRef]
- Jamil, M.; Jahangir, M.; Rehman, S.U. Smoke induced physiological, biochemical and molecular changes in germinating rice seeds. Pak. J. Bot 2020, 52, 865–871. [Google Scholar] [CrossRef]
- Noroozi Shahri, F.; Jalali Honarmand, S.; Saeidi, M.; Mondani, F. Evaluation of some biochemical characteristics of medicinal plant basil (Ocimum basilicum L.) under the application of growth phytohormones and phytohormones-like. J. Plant Proc. Func. 2021, 10, 189–210. [Google Scholar]
- Shah, F.A.; Wei, X.; Wang, Q.; Liu, W.; Wang, D.; Yao, Y.; Hu, H.; Chen, X.; Huang, S.; Hou, J. Karrikin improves osmotic and salt stress tolerance via the regulation of the redox homeostasis in the oil plant Sapium sebiferum. Front. Plant Sci. 2020, 11, 216. [Google Scholar] [CrossRef]
- Tan, Z.-Z.; Wang, Y.-T.; Zhang, X.-X.; Jiang, H.-Y.; Li, Y.; Zhuang, L.-L.; Yu, J.-J.; Yang, Z.-M. Karrikin1 Enhances Drought Tolerance in Creeping Bentgrass in Association with Antioxidative Protection and Regulation of Stress-Responsive Gene Expression. Agron. 2023, 13, 675. [Google Scholar] [CrossRef]
- Ahmad, B.; Qadir, S.U.; Dar, T.A.; Alam, P.; Yousuf, P.Y.; Ahmad, P. Karrikins: smoke-derived phytohormones from stress alleviation to signaling. J. Plant Growth Regul. 2022, 1–13. [Google Scholar] [CrossRef]
- Bączek-Kwinta, R. An Interplay of Light and Smoke Compounds in Photoblastic Seeds. Plants 2022, 11, 1773. [Google Scholar] [CrossRef]
- Flematti, G.R.; Waters, M.T.; Scaffidi, A.; Merritt, D.J.; Ghisalberti, E.L.; Dixon, K.W.; Smith, S.M. Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds. Mol. Plant 2013, 6, 29–37. [Google Scholar] [CrossRef]
- Pošta, M.; Light, M.E.; Papenfus, H.B.; Van Staden, J.; Kohout, L. Structure–activity relationships of analogs of 3, 4, 5-trimethylfuran-2 (5H)-one with germination inhibitory activities. J. plant physio. 2013, 170, 1235–1242. [Google Scholar] [CrossRef]
- Papenfus, H.B.; Naidoo, D.; Pošta, M.; Finnie, J.F.; Van Staden, J. The effects of smoke derivatives on in vitro seed germination and development of the leopard orchid Ansellia africana. Plant Biol. 2016, 18, 289–294. [Google Scholar] [CrossRef]
- Baldos, O.C.; DeFrank, J.; Sakamoto, G.S. Germination response of dormant tanglehead (Heteropogon contortus) seeds to smoke-infused water and the smoke-associated stimulatory compounds, karrikinolide and cyanide. Hortic. Sci. 2015, 50, 421–429. [Google Scholar] [CrossRef]
- Cao, D.; Schöttner, M.; Halitschke, R.; Li, D.; Baldwin, G.; Rocha, C.; Baldwin, I.T. Syringaldehyde is a novel smoke-derived germination cue for the native fire-chasing tobacco, Nicotiana attenuata. Seed Sci. Res. 2021, 31, 292–299. [Google Scholar] [CrossRef]
- Demir, I.; Ozden, E.; Yıldırım, K.; Sahin, O.; Van Staden, J. Priming with smoke-derived karrikinolide enhances germination and transplant quality of immature and mature pepper seed lots. S. Afr. J. Bot. 2018, 115, 264–268. [Google Scholar] [CrossRef]
- Akeel, A.; Khan, M.M.A.; Jaleel, H.; Uddin, M. Smoke-saturated water and karrikinolide modulate germination, growth, photosynthesis and nutritional values of carrot (Daucus carota L.). J. Plant Growth Regul. 2019, 38, 1387–1401. [Google Scholar] [CrossRef]
- Obata, T.; Fernie, A.R. The use of metabolomics to dissect plant responses to abiotic stresses. Cell. Mol. Life Sci. 2012, 69, 3225–3243. [Google Scholar] [CrossRef] [PubMed]
- Dolferus, R. To grow or not to grow: a stressful decision for plants. Plant Sci. 2014, 229, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Leuendorf, J.E.; Frank, M.; Schmülling, T. Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Sci Rep. 2020, 10, 689. [Google Scholar] [CrossRef] [PubMed]
- Keeley, J.E. Fire in Mediterranean climate ecosystems—A comparative overview. Isr. J. Ecol. Evol. 2012, 58, 123–135. [Google Scholar]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends plant sci. 2011, 16, 406–411. [Google Scholar] [CrossRef]
- Lamont, B.B.; He, T. Fire-proneness as a prerequisite for the evolution of fire-adapted traits. Trends Plant Sci. 2017, 22, 278–288. [Google Scholar] [CrossRef]
- He, T.; Lamont, B.B. Baptism by fire: the pivotal role of ancient conflagrations in evolution of the Earth’s flora. Nat. Sci. Rev. 2018, 5, 237–254. [Google Scholar] [CrossRef]
- Keeley, J.E.; Pausas, J.G. Evolutionary ecology of fire. Annual Review of Ecology, Evol. Syst. 2022, 53, 203–225. [Google Scholar] [CrossRef]
| plant ecosysytem | Biomes | Plant Species | Reference | ||
|---|---|---|---|---|---|
| Fire-prone ecosystem | Smoke | Smoke water | Heat | ||
| South African and Australian | Fynbos | Poaceae sp. | [23] | ||
| The South America | Cerrado | Mimosa somnians | [10] | ||
| Cambessedesia hilariana | |||||
| Microlicia sp. | |||||
| The South America | Matorral | Acacia caven, | [19] | ||
| Baccharis vernalis | |||||
| Trevoa quinquenervia | |||||
| Asia, Sri Lanka habitats | Savanna-Woodland | Flueggea leucopyrus | [32] | ||
| Maesa indica | |||||
| Phyllanthus emblica L. | |||||
| Chromolaena odorata L. | |||||
| Hyptis suaveolens L. | |||||
| Africa, BurkinaFaso habitats | Sudanian Savanna-Woodland | Pteleopsis suberosa | [8] | ||
| Terminalia avicennioides | |||||
| Borreria scabra | [24] | ||||
| Mediterranean Basin | Chaparral | Annual herbaceous sp. | [17] | ||
| Florida | Scrub | Chrysopsis. highlandsensis | [6] | ||
| Eryngium cuneifolium | |||||
| Lechea. cernua | |||||
| Mexico | Montane Forest | Fuchsia encliandra | Calliandra longirostrata | [25] | |
| Pinus douglasiana | Lupinus exaltatus | ||||
| Rhus schmidelioides | |||||
| Salvia iodantha | |||||
| non-fire prone ecosystem | |||||
| North Europe | Temperate Region | Camelina microcarpa | [33] | ||
| Descurainia sophia | |||||
| Plantago lanceolata | |||||
| North America | Boreal Forest | Vaccinium myrtilloides | [29] | ||
| China Plants | Monsoon Climate | Aristolochia debilis | [31] | ||
| Central Europe | Common Plants | Matricaria chamomilla | [34] | ||
| Solidago gigantea(alien, invasive) | |||||
| Trifolium repens | |||||
| Northeast China | Saline-Alkaline Grasslands | Setaria viridis | Suaeda glauca | [39] | |
| Kochia scoparia | Kochia scoparia | ||||
| Northeast China | Northern Peatland | Sphagnum flexuosum | [26] | ||
| Sphagnum subnitens | |||||
| Sphagnum imbricatum | |||||
| Sphagnum magellanicum | |||||
| Sphagnumfuscum | |||||
| Polytrichum strictum | |||||
| Sphagnum squarrosum | |||||
| Drepanocladus aduncus | |||||
| Physcomitrium sphaericum | |||||
| Hypnum callichroum | |||||
| Plant Species | Physiologically active smoke compound of smoke | Mode of Action | Reference |
|---|---|---|---|
| Lactuca sativa cv. | KAR1 | Stimulates seed germination | [56] |
| Chaenorhinum rubrifolium | Aqueous smoke, Nitrate | Breakdown of physiological dormancy | [16] |
| KAR1, MAN | Stimulates seed germination | ||
| Ansellia africana | TMB | Reduced the germination rate index and the development rate index | [57] |
| Heteropogon contortus | Benzaldehyde, Cyanide, Potassium cyanide | Stimulates seed germination | [58] |
| Lactuca sativa | MAN | Inhibit seed germination | [18] |
| Nicotiana attenuata | SAL | Stimulates seed germination | [59] |
| Artemisia absinthium L. | SGV | Stimulates seed germination | [34] |
| Plantago major L. | Stimulates seed germination | ||
| Mediterranean plant species | Glyceronitrile and smoke/butanolide solution | Seed germination and seedling length were enhanced | [17] |
| Capsicum annuum L. | KAR1 | Stimulate germination, seedling emergence | [60] |
| Daucus carota L. | KAR1 | germination, plant height | [61] |
| 1 | Nitrogen- fixer species |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).