Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Global and Conditional Disruption of the Igf-I Gene in Osteoblasts and/or Chondrocytes Un-veils Epiphyseal and Metaphyseal Bone-Specific Effects of IGF-I in Bone

Version 1 : Received: 7 August 2023 / Approved: 8 August 2023 / Online: 9 August 2023 (10:52:29 CEST)

A peer-reviewed article of this Preprint also exists.

Xing, W.; Kesavan, C.; Pourteymoor, S.; Mohan, S. Global and Conditional Disruption of the Igf-I Gene in Osteoblasts and/or Chondrocytes Unveils Epiphyseal and Metaphyseal Bone-Specific Effects of IGF-I in Bone. Biology 2023, 12, 1228. Xing, W.; Kesavan, C.; Pourteymoor, S.; Mohan, S. Global and Conditional Disruption of the Igf-I Gene in Osteoblasts and/or Chondrocytes Unveils Epiphyseal and Metaphyseal Bone-Specific Effects of IGF-I in Bone. Biology 2023, 12, 1228.

Abstract

To evaluate the relative importance of IGF-I expression in various cell types for endochon-dral ossification, we quantified the trabecular bone at the secondary spongiosa and epiphysis of the distal femur in 8-12-week-old male mice with a global knockout of the Igf-I gene as well as conditional deletion of the Igf-I gene in osteoblasts, chondrocytes, osteo-blasts/chondrocytes, and their corresponding control wild type littermates. The osteoblast-, chondrocyte- and osteoblast/chondrocyte-specific Igf-I conditional knockout mice were generated by crossing Igf-I floxed mice with Cre transgenic mice in which Cre expression is under the control of Col1α2 or Col2α1 promoter. We found that global disruption of Igf-I resulted in 80% and 70% reduction in bone size, which is defined as total volume, at the secondary spongiosa and epiphysis of the distal femur, respectively. Abrogation of Igf-I in Col1α2-producing osteoblasts, but not Col2α1-producing chondrocytes, decreased bone size by 25% at both the secondary spongiosa and epiphysis while deletion of the Igf-I globally or specifically in osteoblasts or chondrocytes reduced trabecular bone mass by 25%. By contrast, global Igf-I knockout but not conditional knockout of Igf-I in osteoblasts and/or chondrocytes reduced trabecular bone mass in the epiphysis. The reduced trabecu-lar bone mass at the secondary spongiosa in osteoblast- and/or chondrocyte-specific Igf-I conditional knockout mice is caused by reduced trabecular number and increased trabec-ular separation. Immunohistochemistry studies revealed that expression levels of chon-drocyte (COL10, MMP13) and osteoblast (BSP) markers were reduced in the secondary spongiosa and the epiphyses in the global Igf-I knockout mice. Our data indicate that local and endocrine IGF-I actions in bone are pleiotropic and dependent on cell type as well as the bone compartment where IGF-I acts.

Keywords

IGF-I; knockout; bone; chondrocyte; osteoblast; endochondral ossification; epiphysis; sec-ondary spongiosa; bone mass

Subject

Biology and Life Sciences, Cell and Developmental Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.