Submitted:
02 August 2023
Posted:
03 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and methods
2.1. Study design
2.2. Study population and exclusion criteria
2.3. Single nucleotide polymorphisms detection
2.4. Complete blood count and biochemical analysis
2.5. Statistical analysis
3. Results
3.1. Initial grouping and screening
3.2. Genetic model analysis
3.3. Associations of routine laboratory findings with different genotypes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix
| Complete blood count (CBC) parameter | Rs polymorphism | CBC parameter median (min, max) | Genetic model statistical significance (p) | |||||
| Wilde type (WT) | Heterozygous (HT) |
Minor genotype (MT) |
C1 | C2 | D | R | ||
| WT vs HT | WT vs MT | WT vs HT+MT |
MT vs WT+HT |
|||||
| BASO (%) | rs1800566 | 0.40 (0.00-2.10) |
0.40 (0.00-1.40) |
0.60 (0.10-2.00) |
0.045 | |||
| rs7787362 | 0.50 (0.00-2.10) |
0.40 (0.00-1.80) |
0.40 (0.10-2.00) |
0.015 | 0.046 | 0.035 | ||
| EOZ (%) | rs1143634 | 2.40 (0.00-13.20) |
2.30 (0.40-7.30) |
2.80 (1.00-7.00) |
0.046 | |||
| LYMPH (%) | rs1001179 | 35.00 (13.90-54.20) |
34.10 (17.10-50.90) |
38.95 (22.40-65.40) |
0.038 | 0.031 | ||
| rs1143634 | 35.10 (13.90-65.40) |
33.90 (17.70-54.20) |
37.20 (27.30-49.90) |
0.043 | 0.026 | |||
| rs1800012 | 34.9 (13.9-65.4) |
35.1 (19.9-50.9) |
41.6 (35-45.1) |
0.042 | 0.042 | |||
| rs1800629 | 35.4 (13.9-54.2) |
33.00 (17.10-65.40) |
36.40 (29.40-51.50) |
0.029 | ||||
| rs4880 | 34.00 (13.90-65.40) |
34.90 (16.00-54.20) |
36.30 (17.70-50.90) |
0.046 |
||||
| MONO (%) | rs1050450 |
8.95 (4.90-23.30) |
9.30 (4.50-26.50) |
9.80 (4.10-15.10) |
0.018 | 0.014 | ||
| rs2066853 |
9.20 (4.90-26.50) |
8.55 (4.10-14.50) |
13.80 (13.80-13.80 |
0.037 | ||||
| NEUT (%) | rs1001179 |
52.20 (23.90-78.20) |
52.30 (36.50-73.10) |
45.55 (23.50-66.70) |
0.027 | 0.022 | ||
| rs1050450 | 52.65 (23.90-76.90) |
49.60 (23.50-78.20) |
52.70 (38.50-69.40) |
0.049 | ||||
| rs1143634 |
51.80 (23.50-78.20) |
53.00 (23.90-70.60) |
48.20 (36.50-58.70) |
0.009 | 0.004 | |||
| LYMPH (N) | rs17553719 | 1.98 (0.93-3.87) |
1.96 (0.96-3.69) |
2.21 (1.22-4.25) |
0.016 | 0.019 | ||
| NEUT (N) | rs1001179 | 2.89 (1.01-8.27) |
3.06 (0.95-7.49) |
2.29 (1.32-5.22) |
0.017 | 0.009 | ||
| rs1050450 |
3.12 0.95-8.24) |
2.73 (1.29-8.27) |
3.18 (1.74-6.21) |
0.028 | ||||
| rs1800629 |
2.89 (1.01-8.27) |
3.38 0.95-7.49) |
2.79 (1.27-3.55) |
0.016 | ||||
| rs1800795 |
3.23 (1.01-8.27) |
2.90 (0.95-7.05) |
2.91 (1.29-7.08) |
0.047 | ||||
| RBC | rs1800629 | 4.59 (3.66-5.85) |
4.63 (3.55-5.74) |
4.29 (3.94-4.72) |
0.023 | |||
| rs1800795 | 4.63 (3.55-5.85) |
4.59 (3.84-5.61) |
4.59 (3.66-5.74) |
0.020 | 0.023 | |||
| WBC | rs1001179 | 5.83 (2.54-11.77) |
5.92 (2.5-10.75) |
5.11 (2.48-8.23) |
0.050 | |||
| rs1800629 | 5.69 (2.8-11.77) |
6.12 (2.47-10.45) |
5.15 (4.08-6.56) |
0.044 | ||||
| MONO (N) | rs1800795 | 6.06 (2.87-11.78) |
5.64 (2.47-10.75) |
5.79 (3.41-11.19) |
0.048 | |||
| Immunochemistry parameter | Rs polymorphism | Immunochemistry parameter median (min, max) | Genetic model statistical significance (p) | |||||
| Wilde type (WT) | Heterozygous (HT) |
Minor genotype (MT) |
C1 | C2 | D | R | ||
| WT vs HT | WT vs MT | WT vs HT+MT |
MT vs WT+HT |
|||||
| ALT | rs1001179 | 18.10 (4.40-71.90) |
17.50 (4.30-116.40) |
14.85 (9.10-34.90) |
0.05 | |||
| rs1050450 | 18.00 (4.30-71.90) |
16.40 (4.40-116.40) |
19.30 (10.30-60.00) |
0.046 | ||||
| rs1799750 | 16.30 (4.30-48.10) |
18.15 (4.40-116.40) |
17.10 (4.60-71.90) |
0.04 | 0.049 | 0.046 | ||
| rs1800566 | 17.80 (4.30-116.40) |
17.10 (4.40-66.30) |
12.70 (7.80-34.90) |
0.036 | 0.041 | |||
| rs1126809 | 18.30 (4.60-66.30) |
16.10 (4.30-71.90) |
18.05 (7.80-116.40) |
0.03 | 0.037 | |||
| AST | rs1143634 | 17.90 (10.10-73.10) |
18.30 (9.90-124.60) |
20.45 (13.40-67.50) |
0.011 | 0.014 | ||
| rs16891982 | 17.95 (9.9-124.6) |
21.1 (12.9-34.7) |
- | 0.01 | ||||
| rs26722 | 18.00 (9.90-124.60) |
21.60 (14.10-34.70) |
- | 0.019 | ||||
| rs1799750 | 17.60 (9.90-45.50) |
18.40 (10.20-67.50) |
18.10 (10.30-124.60) |
0.049 | ||||
| Chlorine | rs1800012 | 102.90 (91.90-109.30) |
103.65 (98.80-112.40) |
101.70 (100.50-105.60) |
0.047 | |||
| rs26722 | 103.15 (91.90-112.40) |
101.45 (97.50-106.20) |
- | 0.01 | ||||
| rs16891982 | 103.2 (91.9-112.4) |
101.7 (97.5-106.2) |
- | 0.006 | ||||
| rs26722 | 71.60 (59.30-81.90) |
74.45 (69.60-82.60) |
- | 0.003 | ||||
| rs16891982 | 71.6 (59.3-81.9) |
73.9 (67.3-82.6) |
0.005 | |||||
| Calcium | rs26722 | 2.39 (1.97-2.67) |
2.47 (2.23-2.58) |
- | 0.003 | |||
| rs16891982 | 2.39 (1.97-2.67) |
2.44 (2.23-2.58) |
- | 0.031 | ||||
| rs4880 | 2.41 (2.13-2.63) |
2.38 (1.97-2.66) |
2.40 (2.15-2.67) |
0.06 | ||||
| Calcium++ | rs4880 | 1.25 (1.16-1.35) |
1.25 (1.07-1.34) |
1.26 (1.18-1.38) |
0.036 | |||
| krs17553719 | 1.25 (1.07-1.38) |
1.26 (1.16-1.38) |
1.25 (1.18-1.29) |
0.032 | ||||
| Potassium | rs17553719 | 4.5 (3.7-6.06) |
4.5 (3.7-5.9) |
4.4 (3.9-5.4) |
0.041 | |||
| rs26722 | 4.50 (3.70-6.06) |
4.65 (3.90-5.90) |
- |
0.045 |
||||
| Creatinine |
rs1799750 | 68.0 (45.0-115.0) |
68.0 (45.0-116.0) |
71.0 (48.0-124.0) |
||||
| rs1800566 | 68.0 (45.0-116.0) |
71.50 (48.0-124.0) |
66.0 (45.0-94.0) |
0.022 | ||||
| Total cholesterol | rs1800795 | 4.97 (3.07-7.81) |
5.29 (2.67-8.63) |
5.06 (3.29-8.96) |
0.043 | |||
| krs17553719 | 5.075 (3.07-8.96) |
5.08 (2.67-7.63) |
5.42 (3.37-7.87) |
0.041 |
0.034 | |||
| rs2066853 | 5.15 (2.67-8.63) |
4.78 (3.26-8.96) |
5.57 (5.57-5.57) |
0.024 | 0.029 | |||
| HDL cholesterol | rs1800795 | 1.55 (0.76-2.83) |
1.71 (0.88-3.00) |
1.58 (0.75-2.61) |
0.006 | 0.037 | ||
| rs1126809 | 1.58 (0.76-3.00) |
1.71 (0.75-2.85 |
1.67 (0.94-2.41) |
0.036 | 0.034 | |||
| MTL cholesterol | rs1143634 | 2.79 (1.04-6.07) |
3.05 (1.45-6.15 |
2.98 (1.47-4.95) |
0.040 | 0.024 | ||
| rs1800566 | 2.82 (1.04-6.15) |
3.17 (1.27-6.07 |
3.01 (1.54-4.95) |
0.043 | 0.031 | |||
| rs2066853 | 2.98 (1.04-6.15) |
2.59 (1.04-6.07) |
3.24 (3.24-3.24) |
0.017 | 0.021 | |||
| Triglycerides | rs17553719 | 1.1 (0.32-5.50) |
1 (0.40-7.60) |
1.3 (0.5-4.8) |
0.049 | 0.044 | ||
| Sodium | rs17553719 | 139.0 (134.0-145.0) |
139.0 (135.0-144.0) |
138.0 (134.0-143.0) |
0.04 | 0.06 | ||
| Pancreatic amylase | rs1001179 | 28.00 (4.00-133.00) |
24.50 (10.00-73.00) |
32.00 (19.00-63.00) |
0.037 | |||
| rs1143634 | 27.00 (10.00-133.00) |
27.00 (4.00-73.00) |
22.00 (12.00-45.00) |
0.015 | 0.017 | |||
| rs2066853 | 27.00 (4.00-133.00 |
27.00 (10.00-50.00) |
50.00 (50.00-50.00) |
|||||
| rs17553719 | 27.00 (10.0-133.0) |
27.00 (4.00-82.00) |
33.00 (15.00-58.00) |
0.01 | 0.01 | |||
| Alkaline phosphatase | rs7787362 | 55.0 (26.0-175.0) |
58.0 (28.0-26.0) |
55.0 (13.0-141.0) |
0.009 | 0.032 | ||
| Urea | rs1800012 | 4.60 (1.70-9.90) |
4.60 (2.10-13.20) |
3.70 (2.80-4.50) |
0.045 | 0.044 | ||
| rs1800795 | 4.50 (2.10-8.90) |
4.60 (1.70-9.90) |
4.75 (1.70-13.20) |
0.044 | 0.040 | |||
| rs4880 | 4.55 (2.20-8.50) |
4.50 (1.70-9.90) |
4.90 (2.10-13.20) |
0.048 | ||||
| rs1800629 | 4.60 (2.10-10.70) |
4.50 (1.70-13.20) |
5.00 (3.30-7.30) |
0.04 | ||||
| TSH | rs4880 | 1.39 (0.01-3.67) |
1.50 (0.30-52.88) |
1.56 (0.10-10.19) |
0.020 | |||
| rs1050450 | 1.47 (0.01-52.88) |
1.46 (0.14-7.71) |
1.72 (0.59-2.61) |
0.02 | ||||
| CRP | rs1799750 | 0.54 (0.00-138.89) |
0.58 (0.03-21.91) |
0.88 (0.06-11.98) |
||||
| rs1800012 | 0.54 (0.00-138.89) |
0.71 (0.01-11.98) |
0.27 (0.10-0.35) |
0.041 | 0.031 | |||
| rs1800629 | 0.51 (0.00-138.89) |
0.77 (0.08-11.57) |
1.27 (0.37-2.58) |
0.021 | ||||
| GGT | rs1143634 | 13.00 (0.00-218.00) |
11.00 (0.00-713.00) |
17.00 (5.00-174.00) |
0.058 | 0.022 | 0.006 | |
| rs26722 | 12.00 (0.00-2713.00) |
18.50 (6.00-56.00) |
- | 0.039 | ||||
| IgE | rs1143634 | 36.00 (0.10-1879.0) |
39.80 (0.10-493.0) |
16.20 (0.60-398.5) |
0.049 | 0.030 | ||
References
- Ahmed Z, Zeeshan S, Mendhe D, Dong X. Human gene and disease associations for clinical-genomics and precision medicine research. Clin Transl Med. 2020 Jan;10(1):297-318. [CrossRef]
- Prins BP, Leitsalu L, Pärna K, Fischer K, Metspalu A, Haller T, Snieder H. Advances in Genomic Discovery and Implications for Personalized Prevention and Medicine: Estonia as Example. J Pers Med. 2021 Apr 29;11(5):358. [CrossRef]
- Ng JY, Chew FT. A systematic review of skin ageing genes: gene pleiotropy and genes on the chromosomal band 16q24.3 may drive skin ageing. Sci Rep. 2022 Jul 30;12(1):13099. [CrossRef]
- Wong QYA, Chew FT. Defining skin aging and its risk factors: a systematic review and meta-analysis. Sci Rep. 2021 Nov 11;11(1):22075. [CrossRef]
- Strianese O, Rizzo F, Ciccarelli M, Galasso G, D’Agostino Y, Salvati A, Del Giudice C, Tesorio P, Rusciano MR. Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease. Genes (Basel). 2020 Jul 6;11(7):747. [CrossRef]
- Jeon J, Du M, Schoen RE, Hoffmeister M, Newcomb PA, Berndt SI, et al. Colorectal Transdisciplinary S, Genetics, Epidemiology of Colorectal Cancer C. Determining Risk of Colorectal Cancer and Starting Age of Screening Based on Lifestyle, Environmental, and Genetic Factors. Gastroenterology. 2018. [CrossRef]
- Ahmed S, Zhou Z, Zhou J, Chen SQ. Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine. Genomics Proteomics Bioinformatics. 2016 Oct;14(5):298-313. . Epub 2016 Oct 8. Erratum in: Genomics Proteomics Bioinformatics. 2018 Apr 21. [CrossRef]
- Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, Baccarani M, Deininger MW, Cervantes F, Fujihara S, Ortmann CE, Menssen HD, Kantarjian H, O’Brien SG, Druker BJ; IRIS Investigators. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N Engl J Med. 2017 Mar 9;376(10):917-927. [CrossRef]
- Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril. 2018 Jun;109(6):952-963. [CrossRef]
- Makrantonaki E, Bekou V, Zouboulis CC. Genetics, and skin aging. Dermatoendocrinol. 2012 Jul 1;4(3):280-4. [CrossRef]
- Naval J, Alonso V, Herranz MA. Genetic polymorphisms and skin aging: the identification of population genotypic groups holds potential for personalized treatments. Clin Cosmet Investig Dermatol. 2014 Jul 1;7:207-14. [CrossRef]
- De Sousa SMC, Manavis J, Feng J, Wang P, Schreiber AW, Scott HS, Torpy DJ. A putative role for the aryl hydrocarbon receptor (AHR) gene in a patient with cyclical Cushing’s disease. BMC Endocr Disord. 2020 Jan 29;20(1):18. [CrossRef]
- Liu, F., Hamer, M. A., Deelen, J., Lall, J. S., Jacobs, L., van Heemst, D., et al. (2016). The MC1R Gene and Youthful Looks. Curr. Biol. 26, 1213–1220. [CrossRef]
- Laville, V., Clerc, S. L., Ezzedine, K., Jdid, R., Taing, L., Labib, T., et al. (2016). A Genome-wide Association Study in Caucasian Women Suggests the Involvement ofHLAgenes in the Severity of Facial Solar Lentigines. Pigment Cel Melanoma Res. 29, 550–558. [CrossRef]
- Rahmouni M, Laville V, Spadoni J-L, Jdid R, Eckhart L, Gruber F, Labib T, Coulonges C, Carpentier W, Latreille J, Morizot F, Tschachler E, Ezzedine K, Le Clerc S and Zagury J-F (2022) Identification of New Biological Pathways Involved in Skin Aging From the Analysis of French Women Genome-Wide Data. Front. Genet. 13:836581. [CrossRef]
- Nistico SP, Del Duca E, Garoia F (2018) Genetic Customization of Anti-aging Treatments. J Clin Exp Dermatol Res 9: 443. [CrossRef]
- Jafrin S, Aziz MA, Islam MS. Role of IL-1β rs1143634 (+3954C>T) polymorphism in cancer risk: an updated meta-analysis and trial sequential analysis. J Int Med Res. 2021 Dec;49(12):3000605211060144. [CrossRef]
- He C, Qureshi AA, Han J. Polymorphisms in genes involved in oxidative stress and their interactions with lifestyle factors on skin cancer risk. J Dermatol Sci. 2010 Oct;60(1):54-6. Epub 2010 Jul 15. [CrossRef]
- Bulatova IA, Tretyakova YI, Shchekotov VV, Shchekotova AP, Ulitina PV, Krivtsov AV, Nenasheva OY. [Catalase gene rs1001179 polymorphism and oxidative stress in patients with chronic hepatitis C and ulcerative colitis]. Ter Arkh. 2015;87(2):49-53. Russian. [CrossRef]
- Wang C, Zhang R, Chen N, Yang L, Wang Y, Sun Y, Huang L, Zhu M, Ji Y, Li W. Association between glutathione peroxidase-1 (GPX1) Rs1050450 polymorphisms and cancer risk. Int J Clin Exp Pathol. 2017 Sep 1;10(9):9527-9540.
- Jerotic D, Ranin J, Bukumiric Z, Djukic T, Coric V, Savic-Radojevic A, Todorovic N, Asanin M, Ercegovac M, Milosevic I, Pljesa-Ercegovac M, Stevanovic G, Matic M, Simic T. SOD2 rs4880 and GPX1 rs1050450 polymorphisms do not confer risk of COVID-19, but influence inflammation or coagulation parameters in Serbian cohort. Redox Rep. 2022 Dec;27(1):85-91. [CrossRef]
- Muhammad Y, Kani YA, Iliya S, et al. Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: A cross-sectional comparative study in Jigawa, orthwestern Nigeria. SAGE Open Med. 2021;9:2050312121991246.
- Du R, Lei T. Effects of autologous platelet-rich plasma injections on facial skin rejuvenation. Exp Ther Med. 2020 Apr;19(4):3024-3030.. Epub 2020 Feb 17. [CrossRef]
- Banihashemi M, Zabolinejad N, Salehi M, Hamidi Alamdari D, Nakhaizadeh S. Platelet-rich Plasma use for facial rejuvenation: a clinical trial and review of current literature. Acta Biomed. 2021 May 12;92(2):e2021187. [CrossRef]
- Chauhan D, Vande Walle L, Lamkanfi M. Therapeutic modulation of inflammasome pathways. Immunol Rev. 2020 Sep;297(1):123-138. Epub 2020 Aug 7. [CrossRef]
- Neira-Goulart M, de Sá NBR, Ribeiro-Alves M, Perazzo H, Geraldo KM, Ribeiro MPD, Cardoso SW, Grinsztejn B, Veloso VG, Rodrigues Gomes L, Cazote ADS, de Almeida DV, Giacoia-Gripp CBW, Côrtes FH, Morgado MG. Inflammasome genes polymorphisms are associated with progression to mechanical ventilation and death in a cohort of hospitalized COVID-19 patients in a reference hospital in Rio de Janeiro, Brazil. Gene. 2023 May 20;865:147325. Epub 2023 Mar 2. [CrossRef]
- Henderson J, O’Reilly S. Inflammasome lights up in systemic sclerosis. Arthritis Res Ther. 2017 Sep 18;19(1):205. [CrossRef]
- Zhou H, Wan H, Zhu L and Mi Y (2022) Research on the effects of rs1800566 C/T polymorphism of NAD(P)H quinone oxidoreductase 1 gene on cancer risk involves analysis of 43,736 cancer cases and 56,173 controls. Front. Oncol. 12:980897. [CrossRef]
- Szkup M, Chełmecka E, Lubkowska A, Owczarek AJ, Grochans E. The influence of the TNFα rs1800629 polymorphism on some inflammatory biomarkers in 45-60-year-old women with metabolic syndrome. Aging (Albany NY). 2018 Oct 31;10(10):2935-2943. [CrossRef]
- Abdalhabib EK, Algarni A, Saboor M, Alanazi F, Ibrahim IK, Alfeel AH, Alanazi AM, Alanazi AM, Alruwaili AM, Alanazi MH, Alshaikh NA. Association of TNF-α rs1800629 with Adult Acute B-Cell Lymphoblastic Leukemia. Genes (Basel). 2022 Jul 13;13(7):1237. [CrossRef]
- Potekaev NN, Borzykh OB, Karpova EI, Petrova MM, Shnayder NA, Zatolokina MA, Demina OM, Dmitrenko DV, Timechko EE. A New Approach toward the Management of Patients with Premature Skin Aging Using the Predictor Effect. Cosmetics. 2023; 10(2):49. [CrossRef]
- Nistico SP, Del Duca E, Garoia F (2018) Genetic Customization of Anti-aging Treatments. J Clin Exp Dermatol Res 9: 443. [CrossRef]
- Branicki, W., Brudnik, U., Draus-Barini, J. et al. Association of the SLC45A2 gene with physiological human hair colour variation. J Hum Genet 53, 966–971 (2008). [CrossRef]
- Strianese O, Rizzo F, Ciccarelli M, Galasso G, D’Agostino Y, Salvati A, Del Giudice C, Tesorio P, Rusciano MR. Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease. Genes (Basel). 2020 Jul 6;11(7):747. [CrossRef]
- Tung JY, Kiefer AK, Mullins M, Francke U, Eriksson N. Genome-wide association analysis implicates elastic microfibrils in the development of nonsyndromic striae distensae. J Invest Dermatol. 2013 Nov;133(11):2628-2631. Epub 2013 Apr 30. [CrossRef]
- Gibbon A, Raleigh SM, Ribbans WJ, Posthumus M, Collins M, September AV. Functional COL1A1 variants are associated with the risk of acute musculoskeletal soft tissue injuries. J Orthop Res. 2020 Oct;38(10):2290-2298. Epub 2020 Feb 11. [CrossRef]
- Li ZZ, Zhong WL, Hu H, Chen XF, Zhang W, Huang HY, Yu B, Dou X. Aryl hydrocarbon receptor polymorphisms are associated with dry skin phenotypes in Chinese patients with atopic dermatitis. Clin Exp Dermatol. 2019 Aug;44(6):613-619. Epub 2018 Nov 29. [CrossRef]
- Reis, L.B., Bakos, R.M., Vianna, F.S.L. et al. Skin pigmentation polymorphisms associated with increased risk of melanoma in a case-control sample from southern Brazil. BMC Cancer 20, 1069 (2020).
- Sturm, R.A., Duffy, D.L. Human pigmentation genes under environmental selection. Genome Biol 13, 248 (2012). [CrossRef]
| Antioxidative | Protective | Elasticity and support | Immune response | Skin hydration |
|
SOD2 (rs4880) [11] |
TYR (rs1126809) [38] |
MMP1 (rs1799750) [11] |
IL1Beta (rs1143634) [17] |
AQP3 (rs17553719) [11] |
|
GPX1 (rs1050450) [11] |
SLC45A2 (rs26722) [39] |
ELN (rs7787362) [35] |
TNF-α (rs1800629) [29] |
|
|
NQO1 (rs1800566) [11] |
SLC45A2 (rs16891982) [38] |
COL1A1(rs1800012) [32] |
||
|
CAT (rs1001179) [11] |
AHR (rs2066853) [37] |
|||
|
IL6 (rs1800795) [11] |
| Function | Corresponding gene with investigated polymorphism | WT | HT | MT | N |
| Antioxidative | SOD2 (rs4880) | 24,86% | 49,46% | 25,68% | 370 |
| GPX1 (rs1050450) | 53,51% | 38,65% | 7,84% | 370 | |
| NQO1 (rs1800566) | 65,41% | 30,27% | 4,32% | 370 | |
| CAT (rs1001179) | 59,73% | 35,95% | 4,32% | 370 | |
| Protective | TYR (rs1126809) | 60,82% | 34,86% | 4,32% | 370 |
| SLC45A2 (rs26722) | 96,22% | 3,78% | 0% | 370 | |
| SLC45A2 (rs16891982) | 94,05% | 5,95% | 0% | 370 | |
| Elasticity and support | MMP1 (rs1799750) | 34,32% | 46,49% | 19,19% | 370 |
| ELN (rs7787362) | 32,97% | 46,76% | 20,27% | 370 | |
| COL1A1 (rs1800012) | 75,95% | 22,70% | 1,35% | 370 | |
| AHR (rs2066853) | 85,05% | 14,68% | 0,27% | 368 | |
| IL6 (rs1800795) | 28,90% | 45,00% | 26,10% | 370 | |
| Immune response | IL1Beta (rs1143634) | 54,32% | 36,49% | 9,19% | 370 |
| TNF-α (rs1800629) | 78,11% | 20,27% | 1,62% | 370 | |
| Hydration | AQP3(rs17553719) | 49,19% | 41,89% | 8,92% | 370 |
| Function | Antioxidative | Protective | Elasticity | Immune response | Hydration | ||||||||||
| CBC parameter | rs4880 | rs1050450 | rs1800566 | rs1001179 | rs1126809 | rs26722 | rs16891982 | rs1799750 | rs7787362 | rs1800012 | rs2066853 | rs1800795 | rs1143634 | rs1800629 | rs17553719 |
| RBC | HT | MT | |||||||||||||
| WBC, total | HT | HT | HT | ||||||||||||
| LYPH (N) | HT | ||||||||||||||
| LYMPH, (%) | MT | MT | MT | MT | HT | HT | |||||||||
| EO (N) | HT | ||||||||||||||
| EO (%) | HT | HT | |||||||||||||
| Baso (N) | MT | MT | |||||||||||||
| HT | |||||||||||||||
| Baso (%) | MT | MT | |||||||||||||
| HT | |||||||||||||||
| MONO (N) | HT | HT | |||||||||||||
| MONO (%) | HT | HT | MT | ||||||||||||
| NEUT (N) | HT | MT | HT | HT | |||||||||||
| NEUT (%) | HT | MT | HT | MT | HT | ||||||||||
| PCT | HT | ||||||||||||||
| MPV | HT | HT | HT | ||||||||||||
| Function | Antioxidative | Protective | Elasticity | Immune response | Hydration | ||||||||||
| Immunochemistry parameter | rs4880 | rs1050450 | rs1800566 | rs1001179 | rs1126809 | rs26722 | rs16891982 | rs1799750 | rs7787362 | rs1800012 | rs2066853 | rs1800795 | rs1143634 | rs1800629 | rs17553719 |
| Potassium | HT | ||||||||||||||
| Calcium | HT | HT | HT* | HT | HT | ||||||||||
| Calcium, ionized | HT | ||||||||||||||
| Chloride | HT | HT | HT | ||||||||||||
| Alkaline phosphatase | HT | HT | |||||||||||||
| Urea | HT | MT^ | MT | ||||||||||||
| Pancreatic Amylase | HT | MT | |||||||||||||
| Creatine | HT | HT | |||||||||||||
| CRP | HT | HT | MT | MT | HT | HT | |||||||||
| HT | HT | ||||||||||||||
| LDL | HT | HT | HT | ||||||||||||
| HDL | HT | HT | |||||||||||||
| Cholesterol | HT | HT | |||||||||||||
| AST | HT | HT | MT | HT | |||||||||||
| ALT | HT | MT | MT | HT | HT | MT | |||||||||
| GGT | HT | MT | |||||||||||||
| HT | |||||||||||||||
| IgE | MT | MT | MT | ||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
