Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Biofilm and Cancer: Interactions and Future Direction for Cancer Therapy

Version 1 : Received: 1 August 2023 / Approved: 2 August 2023 / Online: 3 August 2023 (10:47:22 CEST)

A peer-reviewed article of this Preprint also exists.

Choi, E.; Murray, B.; Choi, S. Biofilm and Cancer: Interactions and Future Directions for Cancer Therapy. Int. J. Mol. Sci. 2023, 24, 12836. Choi, E.; Murray, B.; Choi, S. Biofilm and Cancer: Interactions and Future Directions for Cancer Therapy. Int. J. Mol. Sci. 2023, 24, 12836.

Abstract

There is a growing body of evidence supporting the significant role of bacterial biofilms in the pathogenesis of various human diseases including cancer. Biofilms are polymicrobial communities enclosed within an extracellular matrix composed of polysaccharides, proteins, extracellular DNA, and lipids. This complex matrix provides protection against antibiotics and host immune responses, enabling the microorganisms to establish persistent infections. Moreover, biofilms induce anti-inflammatory responses and metabolic changes in the host, further facilitating their survival. Many of these changes are comparable to those observed in cancer cells. This review will cover recent research on the role of bacterial biofilms in carcinogenesis, especially in colorectal (CRC) and gastric cancers, emphasizing the shared physical and chemical characteristics of biofilms and cancer. This review will also discuss the interactions between bacteria and the tumor microenvironment, which can facilitate oncogene expression and cancer progression. This information will provide insight into developing new therapies to identify and treat biofilm-associated cancers, such as utilizing bacteria as delivery vectors, using bacteria to upregulate immune function, or more selectively targeting biofilms and cancer for their shared traits.

Keywords

extracellular polymeric substance (EPS); tumor microenvironment (TME); tumor microbiome (TM); tumor-associated macrophages (TAM); colorectal cancer (CRC); Fusobacterium nucleatum (Fn); Helicobacter py

Subject

Biology and Life Sciences, Immunology and Microbiology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.