Submitted:
01 August 2023
Posted:
02 August 2023
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. The Use of Water Evaluation and Planning System
- Foum Tillicht station controls upstream of the Ziz River watershed;
- Foum Zaabel station controls upstream of the HAD;
- The HAD hydrometric station controls downstream of the HAD;
- The Erfoud station controls downstream of the Ziz Basin.
2.2.2. The Use of Standard Precipitation Index
2.2.3. The Use of the Standardized Groundwater Index
3. Results and Discussion
3.1. Land Use and Land Cover
3.1.1. Agricultural Land
3.1.2. Urban Area
3.1.3. Barren or Sparse Vegetation
3.1.4. Shrub Land
3.1.5. Forest
3.1.6. Grassland
3.1.7. Open Water
3.2. Standardized Precipitation Index (SPI) Analysis
3.3. Prediction Future for Precipitations and Temperature
3.4. Correlation between SPI and SGI
- At the HAD station, there are significant positive correlations between groundwater levels and SPI for SPI 9, 12, 18, and 24. The highest correlation coefficients are observed for SPI 6 and 9, with coefficients of 0.504 and 0.429, respectively. This indicates that groundwater levels at this station are significantly influenced by precipitation patterns over the past 6 to 24 months.
- At the Foum Tillicht station, there are significant negative correlations between groundwater levels and SPI for SPI 48. This indicates that groundwater levels at this station are significantly influenced by precipitation patterns over the past 48 months, with lower groundwater levels observed after periods of drought.
- At the Radier Erfoud station, there are significant positive correlations between groundwater levels and SPI for SPI 12, 18, and 24. There is also a significant negative correlation between groundwater levels and SPI for SPI 48. This indicates that groundwater levels at this station are significantly influenced by precipitation patterns over the past 12 to 48 months.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Basin | Station | Oued | X (m) |
Y (m) |
S (Km2) | Perimeter (Km) | Thalweg (Km) | K Compacite | Average Altitude (m) | Average Slope (%) |
|---|---|---|---|---|---|---|---|---|---|---|
| Ziz | Zaouia | Sidi Hamza | 564 412 | 204 407 | 102 | 45 | 17 | 2,93 | 2 238 | 18,68 |
| Tillicht | Sidi Hamza | 579 979 | 192 269 | 1309 | 199 | 55 | 2,46 | 1 899 | 10,76 | |
| M'zizel | Ziz | 560 057 | 185 134 | 1190 | 201 | 92 | 7,21 | 2 112 | 14,71 | |
| Zaâbel | Ziz | 597 400 | 174 478 | 4012 | 404 | 152 | 5,86 | 1 839 | 11,07 | |
| HA Dam | Ziz | 615 284 | 103 868 | 4417 | 560 | 183 | 7,6 | 1 808 | 11,12 | |
| Erfoud | Ziz | 615 284 | 103 869 | 8106 | 662 | 262 | 8,48 | 1 482 | 7,55 | |
| Taouz | Ziz | 632 334 | 36 133 | 13480 | 939 | 365 | 10,42 | 1 247 | 5,48 |





References
- Jones, R.L.; Guha-Sapir, D.; Tubeuf, S. Human and Economic Impacts of Natural Disasters: Can We Trust the Global Data? Sci Data 2022, 9, 572. [CrossRef]
- IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)].; Cambridge University Press: Cambridge, UK and New York, USA, 2022;
- CRED The Human Cost of Disasters: An Overview of the Last 20 Years (2000-2019); Centre for Research on the Epidemiology of Disasters United Nations Office for Disaster Risk Reduction, 2020; p. 30;
- CRED The Interplay of Drought-Flood Extreme Events in Africa over the Last Twenty Years (2002-2021); EM-DAT international disaster database; Centre for Research on the Epidemiology of Disasters (CRED): Institute of Health & Society (IRSS), UCLouvain, 2022;
- Elbouqdaoui, K.; Haida, S.; Aboulabbes, O.; Benaabidat, L.; Zahraoui, M.; Ozer, A. Evolution du régime pluviométrique et hydrométrique du bassin versant du Srou (Moyen Atlas, Maroc). Geo-Eco-Trop: Revue Internationale de Géologie, de Géographie et d’Écologie Tropicales 2006, 30, 41.
- Driouech, F. Distribution Des Précipitations Hivernales Sur Le Maroc Dans Le Cadre d’un Changement Climatique. Thèse de Doctorat, Institut national polytechnique de Toulouse: Toulouse, 2010.
- Tramblay, Y.; Badi, W.; Driouech, F.; El Adlouni, S.; Neppel, L.; Servat, E. Climate Change Impacts on Extreme Precipitation in Morocco. Global and Planetary Change 2012, 82–83, 104–114. [CrossRef]
- Sebbar, A. Etude de La Variabilité et de l’évolution de La Pluviométrie Au Maroc (1935-2005) : Réactualisation de La Carte Des Précipitations. Thèse de Doctorat, Université Hassan II: Casablanca, 2013.
- Łabędzki, L.; Bąk, B. Meteorological and Agricultural Drought Indices Used in Drought Monitoring in Poland: A Review. Meteorol. Hydrol. Water Manage. 2014, 2, 3–14. [CrossRef]
- MNSSD Morocco - Climate change and fisheries : impacts and recommendations : Royaume du Maroc - Changement climatique et secteur halieutique : impacts et recommandations; Washington, D.C. : World Bank Group., 2013;
- MTEDD 4ème Communication Nationale Du Maroc à La Convention Cadre Des Nations Unies Sur Les Changements Climatiques; MINISTERE DE LA TRANSITION ENERGETIQUE ET DU DEVELOPPEMENT DURABLE - Département de l’Environnement: Maroc, 2020;
- INRA Agriculture Résiliente Dans Un Contexte de Changement Climatique (Actes de Séminaire).; INRA - Editions, 2018; p. 128.
- Zhang, H.; Ding, J.; Wang, Y.; Zhou, D.; Zhu, Q. Investigation about the Correlation and Propagation among Meteorological, Agricultural and Groundwater Droughts over Humid and Arid/Semi-Arid Basins in China. Journal of Hydrology 2021, 603, 127007. [CrossRef]
- Ben Salem, A.; Ben Salem, S.; Yacoubi Khebiza, M.; Messouli, M. Ecosystem Services Demand Management Under Climate Change Scenarios: Use of WEAP Software in Case of Water Demand in Ziz Basin, Morocco. In Research Anthology on Environmental and Societal Impacts of Climate Change; IGI Global, 2022; pp. 1944–1964 ISBN 978-1-66843-686-8.
- Rochdane, S.; Reichert, B.; Messouli, M.; Babqiqi, A.; Khebiza, M.Y. Climate Change Impacts on Water Supply and Demand in Rheraya Watershed (Morocco), with Potential Adaptation Strategies. Water 2012, 4, 28–44. [CrossRef]
- Karmaoui, A.; Minucci, G.; Messouli, M.; Khebiza, M.Y.; Ifaadassan, I.; Babqiqi, A. Climate Change Impacts on Water Supply System of the Middle Draa Valley in South Morocco. In Climate Change, Food Security and Natural Resource Management : Regional Case Studies from Three Continents; Behnassi, M., Pollmann, O., Gupta, H., Eds.; Springer International Publishing: Cham, 2019; pp. 163–178 ISBN 978-3-319-97091-2.
- ABHZGR Agence Du Bassin Hydraulique Du Guir-Ziz-Rhéris- Errachidia Available online: http://www.abhgzr.ma/ (accessed on 6 January 2023).
- Ait Boughrous, A.; Yacoubi Khebiza, M.; Martin, P.; Ben Salem, A.; Messouli, M. Menaces Climatiques Sur Les Écosystèmes Aquatiques Souterrains de La Réserve de La Biosphère Des Oasis Du Sud Marocain. In Barbault, R. & Foucault, A., Changements climatiques et biodiversité.; Vuibert - AFAS, 2010; pp. 111–122.
- Bousfoul, M.; Babakhouya, A.; Abaouz, A. Gestion Integrée Des Ressources En Eau Dans Le Tafilalet : Une Nécessité Pour La Préservation Des Oasis Du Sud-Est Marocain. In Proceedings of the Symposium International sur le Développement Durable des Systèmes Oasiens; INRA: Erfoud, Maroc, March 8 2005.
- ORMVATF Rapport de l’irrigation Au Tafilalet, Office Régional de Mise En Valeur Agricole Du Tafilalet; 2016;
- WEAP WebHelp/Catchment_Delineation.Htm Available online: https://www.weap21.org/WebHelp/ (accessed on 11 July 2023).
- Engelbrecht, F.; Adegoke, J.; Bopape, M.-J.; Naidoo, M.; Garland, R.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C.; et al. Projections of Rapidly Rising Surface Temperatures over Africa under Low Mitigation. Environmental Research Letters 2015, 10, 085004. [CrossRef]
- Bouaicha, R.; Benabdelfadel, A. Variabilité et gestion des eaux de surface au Maroc. Sécheresse 2010, 21, 325–326. [CrossRef]
- Ben Brahim, M.; Faleh, A.; Abdelhamid, S.; Navas, A.; MACHIN, J.; Gaspar, L. L’eau Dans Le Pays Du Ziz (Sud-Est Marocain), Interactions Entre Nature et Homme; 2013; ISBN 978-9954-32-457-7.
- Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived From Spaceborne Elevation Data. Eos, Transactions American Geophysical Union 2008, 89, 93–94. [CrossRef]
- Seiber, J.; Purkey, D. WEAP—Water Evaluation and Planning System User Guide for WEAP 2015. Stockholm Environmental Institute: Boston, MA, USA 2015.
- Piechota, T.C.; Dracup, J.A. Drought and Regional Hydrologic Variation in the United States: Associations with the El Niño-Southern Oscillation. Water Resources Research 1996, 32, 1359–1373. [CrossRef]
- Hayes, M.; Svoboda, M.; Wall, N.; Widhalm, M. THE LINCOLN DECLARATION ON DROUGHT INDICES: Universal Meteorological Drought Index Recommended. Bulletin of the American Meteorological Society 2011, 92, 485–488. [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the Proceedings of the 8th Conference on Applied Climatology; California, 1993; Vol. 17, pp. 179–183.
- McKee, T.B. Drought Monitoring with Multiple Time Scales. In Proceedings of the Proceedings of 9th Conference on Applied Climatology, Boston, 1995; 1995.
- Beth, L.; Brown, T. A Comparison of Precipitation and Drought Indices Related to Fire Activity in the US.; 2003.
- Tsakiris, G.; Vangelis, H. Towards a Drought Watch System Based on Spatial SPI. Water Resources Management 2004, 18, 1–12. [CrossRef]
- WMO Standardized Precipitation Index: User Guide. (M. Svoboda, M. Hayes and D. Wood) 2012.
- Mashari Eshghabad, S.; Omidvar, E.; Solaimani, K. Efficiency of Some Meteorological Drought Indices in Different Time Scales (Case Study: Tajan Basin, Iran). Ecopersia 2014, 2, 441–453.
- Wmo, G.; Gwp, G. Handbook of Drought Indicators and Indices. Geneva: World Meteorological Organization (WMO) and Global Water Partnership (GWP) 2016.
- Secci, D.; Tanda, M.G.; D’Oria, M.; Todaro, V.; Fagandini, C. Impacts of Climate Change on Groundwater Droughts by Means of Standardized Indices and Regional Climate Models. Journal of Hydrology 2021, 603, 127154. [CrossRef]
- Van Loon, A.F.; Laaha, G. Hydrological Drought Severity Explained by Climate and Catchment Characteristics. Journal of Hydrology 2015, 526, 3–14. [CrossRef]
- Kubicz, J.; Bąk, B. The Reaction of Groundwater to Several Months’ Meteorological Drought in Poland. Pol. J. Environ. Stud. 2018, 28, 187–195. [CrossRef]
- RADEEE Régie Autonome de Distribution d’eau et d’électricité d’Errachidia; 2009;
- Karmaoui, A.; Ben Salem, A.; El Jaafari, S.; Chaachouay, H.; Moumane, A.; Hajji, L. Exploring the Land Use and Land Cover Change in the Period 2005–2020 in the Province of Errachidia, the Pre-Sahara of Morocco. Frontiers in Earth Science 2022, 10.
- RMDU Plan Directeur Régional d’aménagement Du Territoire de La Région de l’Oriental; 2009;
- UN-Habitat Sustainable Urbanization; 2021;
- Naorem, A.; Jayaraman, S.; Dalal, R.; Dang, Y.; Sinha, N.; Ch, S.; Patra, A. Soil Constraints in an Arid Environment—Challenges, Prospects, and Implications. Agronomy 2023, 13, 220. [CrossRef]
- FAO The State of the World’s Forests 2018: Forest Pathways to Sustainable Development; El estado de los bosques del mundo (SOFO); FAO: Rome, Italy, 2018; ISBN 978-92-5-130561-4.
- Critchley, W.; Harari, N.; Mollee, E.; Mekdaschi-Studer, R.; Eichenberger, J. Sustainable Land Management and Climate Change Adaptation for Small-Scale Land Users in Sub-Saharan Africa. Land 2023, 12, 1206. [CrossRef]
- Li, J.; Xiong, G.; Xu, W.; Xie, Z. Distribution of Shrublands in Relation to Soil and Climate in Mid-Subtropical China. Journal of Plant Ecology 2016, 9, 393–401. [CrossRef]
- Nelson, J.T.; Reeves, M.K.; Amidon, F.; Miller, S.E. Hawaiʻi Wet Grassland and Shrubland. In Encyclopedia of the World’s Biomes; Goldstein, M.I., DellaSala, D.A., Eds.; Elsevier: Oxford, 2020; pp. 900–922 ISBN 978-0-12-816097-8.
- Paudel, A.; Markwith, S.H.; Konchar, K.; Shrestha, M.; Ghimire, S.K.; Paudel, A.; Markwith, S.H.; Konchar, K.; Shrestha, M.; Ghimire, S.K. Anthropogenic Fire, Vegetation Structure and Ethnobotanical Uses in an Alpine Shrubland of Nepal’s Himalaya. Int. J. Wildland Fire 2020, 29, 201–214. [CrossRef]
- Integrating Agriculture, Conservation and Ecotourism: Examples from the Field; Campbell, W.B., Lopez Ortiz, S., Eds.; Issues in Agroecology – Present Status and Future Prospectus; Springer Netherlands: Dordrecht, 2011; Vol. 1; ISBN 978-94-007-1308-6.
- Sacco, A.D.; Hardwick, K.A.; Blakesley, D.; Brancalion, P.H.S.; Breman, E.; Rebola, L.C.; Chomba, S.; Dixon, K.; Elliott, S.; Ruyonga, G.; et al. Ten Golden Rules for Reforestation to Optimize Carbon Sequestration, Biodiversity Recovery and Livelihood Benefits. Global Change Biology 2021, 27, 1328–1348. [CrossRef]
- Dahan, R.; Boughlala, M.; Mrabet, R.; Abdelali, L.; Balaghi, R.; Lajouad, L. A Review of Available Knowledge on Land Degradation in Morocco. In: ICARDA (Eds). Morocco. OASIS Contry, Report 2.; 2012; ISBN 92-9127-265-5.
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More Important for Ecosystem Services than You Might Think. Ecosphere 2019, 10, e02582. [CrossRef]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; L. Fry, E.; Johnson, D.; et al. Combatting Global Grassland Degradation. Nat Rev Earth Environ 2021, 2, 720–735. [CrossRef]
- Fenjiro, I.; Zouagui, A.; Manaouch, M. Assessment of the Effects of Land Use/Land Cover Changes on Soil Loss and Sediment Yield Using WaTEM/SEDEM Model: Case Study of Ziz Upper Watershed in SE-Morocco. CURRENT APPLIED SCIENCE AND TECHNOLOGY 2021, 337–350.
- Wetzel, R.G. Freshwater Ecosystems. In Encyclopedia of Biodiversity (Second Edition); Levin, S.A., Ed.; Academic Press: Waltham, 2001; pp. 560–569 ISBN 978-0-12-384720-1.
- Lgourna, Z.; Warner, N.; Bouchaou, L.; Boutaleb, S.; Tagma, T.; Hssaisoune, M.; Ettayfi, N.; Vengosh, A. Nitrate Contamination of Alluvial Groundwater in the Ziz Basin, Southeastern Morocco. Moroccan Journal of Chemistry 2014, 2, 2–451. [CrossRef]
- Karmaoui, A.; Ifaadassan, I.; Messouli, M.; Khebiza, M.Y. Characterization of Common Environmental Indicators of the Moroccan Oasean Biome, Pilot Study in the Reserve Biosphere of Oases in Southern Morocco. Advances in Research 2015, 5, 1–15. [CrossRef]
- Rhazi, L.; Rhazi, M.; Grillas, P.; Khyari, D.E. Richness and Structure of Plant Communities in Temporary Pools from Western Morocco: Influence of Human Activities. Hydrobiologia 2006, 570, 197–203. [CrossRef]
- UNESCO The United Nations world water development report 2021: valuing water; Paris : UNESCO, 2021: France, 2021; ISBN 978-92-3-100434-6.
- Mehdaoui, R.; Mili, E.-M.; Seghir, A. Caractérisation à l’aide du SPI de la Sécheresse climatique dans le bassin versant de Ziz (Sud-Est, Maroc). ESJ 2018, 14, 177. [CrossRef]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Global and Planetary Change 2008, 63, 90–104. [CrossRef]
- El Moçayd, N.; Kang, S.; Eltahir, E.A.B. Climate Change Impacts on the Water Highway Project in Morocco. Hydrology and Earth System Sciences 2020, 24, 1467–1483. [CrossRef]
- Patricola, C.M.; Cook, K.H. Northern African Climate at the End of the Twenty-First Century: An Integrated Application of Regional and Global Climate Models. Clim Dyn 2010, 35, 193–212. [CrossRef]
- El Alaoui El Fels, A.; Saidi, M.E.M.; Bouiji, A.; Benrhanem, M. Rainfall Regionalization and Variability of Extreme Precipitation Using Artificial Neural Networks: A Case Study from Western Central Morocco. Journal of Water and Climate Change 2020, 12, 1107–1122. [CrossRef]
- Uddameri, V.; Singaraju, S.; Hernandez, E. a. Is Standardized Precipitation Index (SPI) a Useful Indicator to Forecast Groundwater Droughts? — Insights from a Karst Aquifer. JAWRA Journal of the American Water Resources Association 2019, 55, 70–88. [CrossRef]
- Guo, M.; Yue, W.; Wang, T.; Zheng, N.; Wu, L. Assessing the Use of Standardized Groundwater Index for Quantifying Groundwater Drought over the Conterminous US. Journal of Hydrology 2021, 598, 126227. [CrossRef]
- Srinivasan, V.; Konar, M.; Sivapalan, M. A Dynamic Framework for Water Security. Water Security 2017, 1, 12–20. [CrossRef]
- Zhang, Y.; Wang, P.; Chen, Y.; Yang, J.; Wu, D.; Ma, Y.; Huo, Z.; Liu, S. The Optimal Time-Scale of Standardized Precipitation Index for Early Identifying Summer Maize Drought in the Huang-Huai-Hai Region, China. Journal of Hydrology: Regional Studies 2023, 46, 101350. [CrossRef]
- Scanlon, B.R.; Mukherjee, A.; Gates, J.; Reedy, R.C.; Sinha, A.K. Groundwater Recharge in Natural Dune Systems and Agricultural Ecosystems in the Thar Desert Region, Rajasthan, India. Hydrogeol J 2010, 18, 959–972. [CrossRef]
- Ministry of Energy, Mines and the Environment Morocco First NDC (Updated Submission) |; 2021;
- Babqiqi, A.; Kassami, A.; Messouli, M. Development of High Resolution Climate Change Scenarios for Morocco for the 21st Century. In Proceedings of the Geoinformatics for Climate Change Studies; TERI Press: New Delhi, 2011.
- Babqiqi, A.; Messouli, M. Simulation Of Climate And Its Implication On Agriculture In Morocco Using Statistical Downscaling. International Journal of Latest Research in Science and Technology 2013, 2, 83–96.
- Driouech, F.; Stafi, H.; Khouakhi, A.; Moutia, S.; Badi, W.; ElRhaz, K.; Chehbouni, A. Recent Observed Country-Wide Climate Trends in Morocco. International Journal of Climatology 2021, 41, E855–E874. [CrossRef]
- ORMVATF Bilan Oléicole Prévisionnel de La Campagne Agricole 2019-2020; Ministère de l’agriculture, de la pèche maritime, du développement rural et des eaux et forets: Errachidia, 2019;
- Khoumsi, W.E.; Hammani, A.; Kuper, M.; Bouaziz, A. La durabilité du système oasien face à la détérioration des ressources en eaux souterraines: cas de la palmeraie de Tafilalet. 2017.
- Ben-said, E.; Boukdir, A.; Mahboub, A.; Younsi, A.; Zitouni, A.; Alili, L.; Ikhmerdi, H. Functioning of the Primary Aquifer Relating to the Maider Basin, Morocco: Case of the Ordovician Aquifer. E3S Web Conf. 2018, 37, 01001. [CrossRef]
- Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; Bouimetarhan, I.; Chehbouni, A. Moroccan Groundwater Resources and Evolution with Global Climate Changes. Geosciences 2020, 10, 81. [CrossRef]
- Filahi, S.; Tanarhte, M.; Mouhir, L.; El Morhit, M.; Tramblay, Y. Trends in Indices of Daily Temperature and Precipitations Extremes in Morocco. Theoretical and Applied Climatology 2016, 124, 959–972. [CrossRef]
- Filahi, S.; Tramblay, Y.; Mouhir, L.; Diaconescu, E.P. Projected Changes in Temperature and Precipitation Indices in Morocco from High-Resolution Regional Climate Models. International Journal of Climatology 2017, 37, 4846–4863. [CrossRef]
- El Ouali, A.; Dichane, Z.; Roubil, A.; El Ouardi, H.; El Hmaidi, A.; Lahrach, A. Hydrological Modeling and Impact of Climate Change on Water Resources in the Ziz Valley, Central High Atlas, Morocco. Ecol. Eng. Environ. Technol. 2023, 24, 192–210. [CrossRef]
- Ait Ouhamchich, K.; Karaoui, I.; Arioua, A.; Kasmi, A.; Elhamdouni, D.; Elfiraoui, F.E.; Arioua, Z.; Nazi, F.; Nabih, N. Climate Change Trend Observations in Morocco: Case Study of Beni Mellal-Khenifra and Darâa-Tafilalt Regions. Journal of Geoscience and Environment Protection 2018, 06, 34. [CrossRef]
- El Alami El Filali, A.; Ben Salem, A.; Messouli, M. Impact of Climate Change on Subterranean Wetland Biodiversity in Tafilalet South-Eastern Morocco. In Climatic and Environmental Significance of Wetlands: Case Studies from Eurasia and North Africa; IGI Global, 2023; pp. 58–73 ISBN 978-1-79989-289-2.
- Ziyadi, M.; Dahbi, A.; Aitlhaj, A.; El Ouahrani, A.; El Ouahidi, A.; Achtak, H. Terraced Agroforestry Systems in West Anti-Atlas (Morocco): Incidence of Climate Change and Prospects for Sustainable Development. In Climate Change-Resilient Agriculture and Agroforestry: Ecosystem Services and Sustainability; Castro, P., Azul, A.M., Leal Filho, W., Azeiteiro, U.M., Eds.; Climate Change Management; Springer International Publishing: Cham, 2019; pp. 1–19 ISBN 978-3-319-75004-0. [CrossRef]
- Boselli, V.; Ouallali, A.; Briak, H.; Houssni, M.; Kassout, J.; El Ouahrani, A.; Michailidi, E.M. System Dynamics Applied to Terraced Agroecosystems: The Case Study of Assaragh (Anti-Atlas Mountains, Morocco). Water 2020, 12, 1693. [CrossRef]
- Sharma, P.; Singh, A.; Kahlon, C.S.; Brar, A.S.; Grover, K.K.; Dia, M.; Steiner, R.L. The Role of Cover Crops towards Sustainable Soil Health and Agriculture—A Review Paper. American Journal of Plant Sciences 2018, 9, 1935–1951. [CrossRef]
- Crystal-Ornelas, R.; Thapa, R.; Tully, K.L. Soil Organic Carbon Is Affected by Organic Amendments, Conservation Tillage, and Cover Cropping in Organic Farming Systems: A Meta-Analysis. Agriculture, Ecosystems & Environment 2021, 312, 107356. [CrossRef]
- Tebaldi, C.; Debeire, K.; Eyring, V.; Fischer, E.; Fyfe, J.; Friedlingstein, P.; Knutti, R.; Lowe, J.; O’Neill, B.; Sanderson, B.; et al. Climate Model Projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth System Dynamics 2021, 12, 253–293. [CrossRef]
- Alaminie, A.A.; Tilahun, S.A.; Legesse, S.A.; Zimale, F.A.; Tarkegn, G.B.; Jury, M.R. Evaluation of Past and Future Climate Trends under CMIP6 Scenarios for the UBNB (Abay), Ethiopia. Water 2021, 13, 2110. [CrossRef]
- Monerie, P.-A.; Wainwright, C.M.; Sidibe, M.; Akinsanola, A.A. Model Uncertainties in Climate Change Impacts on Sahel Precipitation in Ensembles of CMIP5 and CMIP6 Simulations. Clim Dyn 2020, 55, 1385–1401. [CrossRef]










| 2.0 + | Extremely wet |
| 1.5 to 1.99 | Very wet |
| 1.0 to 1.49 | Moderately wet |
| -0.99 to 0.99 | Near normal |
| -1.0 to -1.49 | Moderately dry |
| -1.5 to -1.99 | Severely dry |
| -2 and less | Extremely dry |
| Elevation (m) | Area (ha) | % |
|---|---|---|
| 500 – 1000 | 594256 | 42,42 |
| 1000 – 1500 | 451912 | 32,26 |
| 1500 – 2000 | 228535 | 16,31 |
| 2000 – 2500 | 95871 | 6,84 |
| 2500 – 3000 | 26487 | 1,89 |
| 3000 – 3500 | 3733 | 0,27 |
| 3500 – 4000 | 97 | 0,01 |
| TOTAL | 1400890 | 100 |
| Land Cover | Area (ha) | % |
|---|---|---|
| Agriculture | 38510 | 2,75 |
| Forest | 419 | 0,03 |
| Grassland | 164 | 0,01 |
| Urban | 7834 | 0,56 |
| Shrubland | 1247 | 0,09 |
| Barren or Sparse Vegetation | 1146163 | 81,82 |
| Open Water | 555 | 0,04 |
| TOTAL | 1400890 | 100 |
| SPI (Mean/Watershed) ZIZ | D1 (1990_1999) | D2 (2000_2009) | D3 (2010_2019) |
|---|---|---|---|
| Extremely dry | 0 | 0 | 2 |
| Extremely wet | 0 | 2 | 0 |
| Moderately dry | 12 | 11 | 14 |
| Moderately wet | 21 | 10 | 13 |
| Near normal | 79 | 92 | 72 |
| Severely dry | 3 | 4 | 16 |
| Very wet | 5 | 1 | 3 |
| Pearson Correlations | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Station | Well | SPI 1 | SPI 3 | SPI 6 | SPI 9 | SPI 12 | SPI 18 | SPI 24 | SPI 48 |
| HAD | SGI29/48 | ,280* | ,429** | ,504** | |||||
| SGI39/48 | ,316** | ,463** | |||||||
| SGI120848 | ,312** | ,315** | |||||||
| Foum Tillicht |
SGI597/39 | ,183* | ,222** | ,223* | -,548** | ||||
| SGI592/39 | ,173* | ,219** | ,242** | ,203* | ,187* | ||||
| Radier Erfoud |
SGI525/57 | ,217** | ,326** | ,393** | ,719** | ||||
| SGI448/57 | -,234* | -,326** | -,319** | -,237* | ,310* | ||||
| **. correlation is significant at the 0.01 level (2-tailed). | |||||||||
| *. correlation is significant at the 0.05 level (2-tailed). | |||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
