Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Interaction of S100A6 Protein with the Four-Helical Cytokines

Version 1 : Received: 27 July 2023 / Approved: 28 July 2023 / Online: 28 July 2023 (12:40:50 CEST)

A peer-reviewed article of this Preprint also exists.

Kazakov, A.S.; Deryusheva, E.I.; Rastrygina, V.A.; Sokolov, A.S.; Permyakova, M.E.; Litus, E.A.; Uversky, V.N.; Permyakov, E.A.; Permyakov, S.E. Interaction of S100A6 Protein with the Four-Helical Cytokines. Biomolecules 2023, 13, 1345. Kazakov, A.S.; Deryusheva, E.I.; Rastrygina, V.A.; Sokolov, A.S.; Permyakova, M.E.; Litus, E.A.; Uversky, V.N.; Permyakov, E.A.; Permyakov, S.E. Interaction of S100A6 Protein with the Four-Helical Cytokines. Biomolecules 2023, 13, 1345.

Abstract

S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies revealed the ability of specific S100 proteins to affect cell signaling via direct interaction with cytokines. Previously, we have revealed binding of ca. 71% of the four-helical cytokines by S100P protein due to the presence in its molecule of a cytokine-binding site, which overlaps with the binding site for S100P receptor. Here we show that another S100 protein, S100A6 (pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied affinity of recombinant forms of 35 human four-helical cytokines covering all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold with the equilibrium dissociation constants ranging from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date with selectivity equivalent to that for S100P protein, with the differences limited to binding of Interleukin-2 and Oncostatin-M. The molecular docking study evidences presence in S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of S100 family of a site specific to a wide range of the four-helical cytokines. This unique feature of the S100 proteins potentially allows them to serve as universal inhibitors of signaling of the four-helical cytokines, which could be of value for reduction of severity of the disorders accompanied by excessive release of the cytokines.

Keywords

cytokine; EF-hand; S100 protein; S100A6; protein–protein interaction

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.