Submitted:
27 July 2023
Posted:
28 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
3. Biotechnological approaches for crop improvement
3.1. Gene Transformation
3.1.1. Cry genes
3.1.2. Fusion proteins
3.1.3. Lectins
3.1.4. Alpha-amylase inhibitors (AAIs)
3.1.5. Chitinase
3.1.6. Protease Inhibitors
3.2. Omics approaches
3.2.1. Role of transcriptomics in plant protection
3.2.2. Role of metabolomics in plant protection
3.2.3. Role of epigenomics in plant protection
3.2.4. Role of phenomics in plant protection
3.3. Genome editing technologies
3.3.1. Zinc finger nuclease (ZFNs)
3.3.2. Mega nucleases (MegNs)
3.3.3. Transcription activator-like effector nucleases (TALENs)
3.3.4. Clustered regularly inter spaced short palindromic repeats (CRISPR)
3.4. RNA interference
3.5. Marker-assisted selection
3.6. Anther culture
3.7. Embryo culture
3.8. Protoplast fusion
3.9. Somaclonal variation
4. Conclusions
References
- Zsögön, A.; Peres, L.E.P.; Xiao, Y.; Yan, J.; Fernie, A.R. Enhancing crop diversity for food security in the face of climate uncertainty. Plant J. 2022, 109, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Abo-Bakr, A.; Fahmy, E.M.; Badawy, F.; El-Latif, A.O.A.; Moussa, S. Isolation and characterization of the local entomopathogenic bacterium, Bacillus thuringiensis isolates from different Egyptian soils. Egypt. J. Biol. Pest Control. 2020, 30, 1–9. [Google Scholar] [CrossRef]
- Höfte H, and Whiteley H. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological reviews. 1998;53(2):242-255. [CrossRef]
- Tabashnik, B.E.; Fabrick, J.A.; Unnithan, G.C.; Yelich, A.J.; Masson, L.; Zhang, J.; Bravo, A.; Soberón, M. Efficacy of Genetically Modified Bt Toxins Alone and in Combinations Against Pink Bollworm Resistant to Cry1Ac and Cry2Ab. PLOS ONE 2013, 8, e80496. [Google Scholar] [CrossRef] [PubMed]
- Nicolia, A.; Manzo, A.; Veronesi, F.; Rosellini, D. An overview of the last 10 years of genetically engineered crop safety research. Crit. Rev. Biotechnol. 2013, 34, 77–88. [Google Scholar] [CrossRef]
- Pardo-López, L.; Soberón, M.; Bravo, A. Bacillus thuringiensisinsecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 2013, 37, 3–22. [Google Scholar] [CrossRef]
- Tian, J.-C.; Wang, X.-P.; Chen, Y.; Romeis, J.; Naranjo, S.E.; Hellmich, R.L.; Wang, P.; Shelton, A.M. Bt cotton producing Cry1Ac and Cry2Ab does not harm two parasitoids, Cotesia marginiventris and Copidosoma floridanum. Sci. Rep. 2018, 8, 307. [Google Scholar] [CrossRef]
- Domingo, J.L.; Bordonaba, J.G. A literature review on the safety assessment of genetically modified plants. Environ. Int. 2011, 37, 734–742. [Google Scholar] [CrossRef]
- Bengyella, L.; Yekwa, E.L.; Iftikhar, S.; Nawaz, K.; Jose, R.C.; Fonmboh, D.J.; Tambo, E.; Roy, P. Global challenges faced by engineered Bacillus thuringiensis Cry genes in soybean (Glycine max L.) in the twenty-first century. 3 Biotech 2018, 8, 464. [Google Scholar] [CrossRef]
- Fujimoto, H.; Itoh, K.; Yamamoto, M.; Kyozuka, J.; Shimamoto, K. Insect Resistant Rice Generated by Introduction of a Modified δ-endotoxin Gene of Bacillus thuringiensis. Nat. Biotechnol. 1993, 11, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, M.; Reddy, P.S.; Mustafa, G.; Rajesh, G.; Narasu, V.M.L.; Udayasuriyan, V.; Rana, D. Transgenic rice expressing the cry2AX1 gene confers resistance to multiple lepidopteran pests. Transgenic Res. 2016, 25, 665–678. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P.; Basu, D.; Das, S.; Basu, A.; Ghosh, D.; Ramakrishnan, N.A.; Ghosh, M.; Sen, S.K. Transgenic elite indica rice plants expressing CryIAc ∂-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer ( Scirpophaga incertulas ). Proc. Natl. Acad. Sci. 1997, 94, 2111–2116. [Google Scholar] [CrossRef] [PubMed]
- Mi, X.; Ji, X.; Yang, J.; Liang, L.; Si, H.; Wu, J.; Zhang, N.; Wang, D. Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle. Comptes Rendus Biol. 2015, 338, 443–450. [Google Scholar] [CrossRef]
- Peng, X, Zhong G, Wang, H. Co-expression of Multiple Chimeric Fluorescent Fusion Proteins in an Efficient Way in Plants. Journal of Visualized Experiments. 2018;(137), e57354. [CrossRef]
- Li, X.; Xie, Y.; Zhu, Q.; Liu, Y.-G. Targeted Genome Editing in Genes and cis-Regulatory Regions Improves Qualitative and Quantitative Traits in Crops. Mol. Plant 2017, 10, 1368–1370. [Google Scholar] [CrossRef]
- Zhu, Q.; Yu, S.; Zeng, D.; Liu, H.; Wang, H.; Yang, Z.; Xie, X.; Shen, R.; Tan, J.; Li, H.; et al. Development of “Purple Endosperm Rice” by Engineering Anthocyanin Biosynthesis in the Endosperm with a High-Efficiency Transgene Stacking System. Mol. Plant 2017, 10, 918–929. [Google Scholar] [CrossRef]
- Tang, H.; Zheng, X.; Li, C.; Xie, X.; Chen, Y.; Chen, L.; Zhao, X.; Zheng, H.; Zhou, J.; Ye, S.; et al. Multi-step formation, evolution, and functionalization of new cytoplasmic male sterility genes in the plant mitochondrial genomes. Cell Res. 2017, 27, 130–146. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Mei, F.; Zhang, W.; Shen, Z.; Fang, J. Creation of Bt Rice Expressing a Fusion Protein of Cry1Ac and Cry1I-Like Using a Green Tissue-Specific Promoter. J. Econ. Èntomol. 2014, 107, 1674–1679. [Google Scholar] [CrossRef]
- Stotz, H.U.; Spence, B.; Wang, Y. A defensin from tomato with dual function in defense and development. Plant Mol. Biol. 2009, 71, 131–143. [Google Scholar] [CrossRef]
- Peumans, W.J.; Van Damme, E. Lectins as Plant Defense Proteins. Plant Physiol. 1995, 109, 347–352. [Google Scholar] [CrossRef]
- SILVA JL, CAVALCANTI MA. Corniculariella brasiliensis, a new species of coelomycetes in the rhizosphere of Caesalpinia echinata (Fabaceae, Caesalpinioideae) in Brazil. Phytotaxa 2014;178(3):197-204. [CrossRef]
- Macedo, M.L.R.; Oliveira, C.F.R.; Oliveira, C.T. Insecticidal Activity of Plant Lectins and Potential Application in Crop Protection. Molecules 2015, 20, 2014–2033. [Google Scholar] [CrossRef]
- Habibi, J.; Backus, E.A.; Czapla, T.H. Plant Lectins Affect Survival of the Potato Leafhopper (Homoptera: Cicadellidae). J. Econ. Èntomol. 1993, 86, 945–951. [Google Scholar] [CrossRef]
- Mehrabadi M, Bandani AR, Saadati F, Mahmudvand M. Alpha-Amylase activity of stored products insects and its inhibition by medicinal plant extracts. Journal of Agricultural Science and Technology 2011;13:1173-1182.
- Morton, R.L.; Schroeder, H.E.; Bateman, K.S.; Chrispeels, M.J.; Armstrong, E.; Higgins, T.J.V. Bean α-amylase inhibitor 1 in transgenic peas ( Pisum sativum ) provides complete protection from pea weevil ( Bruchus pisorum ) under field conditions. Proc. Natl. Acad. Sci. 2000, 97, 3820–3825. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Osman, G.H.; Assem, S.K.; Alreedy, R.M.; El-Ghareeb, D.K.; Basry, M.A.; Rastogi, A.; Kalaji, H.M. Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis. Sci. Rep. 2015, 5, 18067. [Google Scholar] [CrossRef] [PubMed]
- Mamta; Reddy, K.R.K.; Rajam, M.V. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Mol. Biol. 2016, 90, 281–292. [CrossRef]
- Arakane, Y.; Zhu, Q.; Matsumiya, M.; Muthukrishnan, S.; Kramer, K.J. Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochem. Mol. Biol. 2003, 33, 631–648. [Google Scholar] [CrossRef]
- Dowd, P.F.; Naumann, T.A.; Price, N.P.; Johnson, E.T. Identification of a maize (Zea mays) chitinase allele sequence suitable for a role in ear rot fungal resistance. Agri Gene 2018, 7, 15–22. [Google Scholar] [CrossRef]
- Sripriya, R.; Parameswari, C.; Veluthambi, K. Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice chitinase (chi11) genes. Vitr. Cell. Dev. Biol. - Plant 2017, 53, 12–21. [Google Scholar] [CrossRef]
- Toufiq, N.; Tabassum, B.; Bhatti, M.U.; Khan, A.; Tariq, M.; Shahid, N.; Nasir, I.A.; Husnain, T. Improved antifungal activity of barley derived chitinase I gene that overexpress a 32 kDa recombinant chitinase in Escherichia coli host. Braz. J. Microbiol. 2017, 42, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Nasir, I.A.; Tabassum, B.; Aaliya, K.; Tariq, M.; Rao, A.Q. Expression studies of chitinase gene in transgenic potato against Alternaria solani. Plant Cell, Tissue Organ Cult. (PCTOC) 2016, 128, 563–576. [Google Scholar] [CrossRef]
- Laskowski Jr M, Kato I. Protein inhibitors of proteinases. Ann Rev Biochem 1980;49(1):593-626.
- Rawlings, N.D.; Barrett, A.J. Peptidases, families, and clans. 2004. [CrossRef]
- Arnaiz, A.; Talavera-Mateo, L.; Gonzalez-Melendi, P.; Martinez, M.; Diaz, I.; Santamaria, M.E. Arabidopsis Kunitz Trypsin Inhibitors in Defense Against Spider Mites. Front. Plant Sci. 2018, 9, 986. [Google Scholar] [CrossRef]
- Rustgi, S.; Boex-Fontvieille, E.; Reinbothe, C.; von Wettstein, D.; Reinbothe, S. Serpin1 and WSCP differentially regulate the activity of the cysteine protease RD21 during plant development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 2017, 114, 2212–2217. [Google Scholar] [CrossRef]
- Stuiver, M.H.; Custers, J.H.H.V. Engineering disease resistance in plants. Nature 2001, 411, 865–868. [Google Scholar] [CrossRef]
- Roberts, T.H.; Hejgaard, J. Serpins in plants and green algae. Funct. Integr. Genom. 2008, 8, 1–27. [Google Scholar] [CrossRef]
- Laluk, K.; Mengiste, T. The Arabidopsis extracellular UNUSUAL SERINE PROTEASE INHIBITOR functions in resistance to necrotrophic fungi and insect herbivory. Plant J. 2011, 68, 480–494. [Google Scholar] [CrossRef]
- Turrà, D.; Bellin, D.; Lorito, M.; Gebhardt, C. Genotype-dependent expression of specific members of potato protease inhibitor gene families in different tissues and in response to wounding and nematode infection. J. Plant Physiol. 2009, 166, 762–774. [Google Scholar] [CrossRef]
- Quilis, J.; Meynard, D.; Vila, L.; Avilés, F.X.; Guiderdoni, E.; Segundo, B.S. A potato carboxypeptidase inhibitor gene provides pathogen resistance in transgenic rice. Plant Biotechnol. J. 2007, 5, 537–553. [Google Scholar] [CrossRef] [PubMed]
- Quilis J, López-García B, Meynard D, Guiderdoni E, San Segundo B. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotech J 2014;12(3):367-77. [CrossRef]
- Dunse, K.M.; Stevens, J.A.; Lay, F.T.; Gaspar, Y.M.; Heath, R.L.; Anderson, M.A. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc. Natl. Acad. Sci. 2010, 107, 15011–15015. [Google Scholar] [CrossRef] [PubMed]
- Valueva, T.A.; Mosolov, V.V. Role of inhibitors of proteolytic enzymes in plant defense against phytopathogenic microorganisms. Biochem. (Moscow) 2004, 69, 1305–1309. [Google Scholar] [CrossRef]
- Castilho A, Windwarder M, Gattinger P, Mach L, Strasser R, Altmann F, Steinkellner H. Proteolytic and N-glycan processing of human α 1-antitrypsin expressed in Nicotiana benthamiana. Plant Physiol 2014;166(4):1839-51. [CrossRef]
- Goulet, C.; Khalf, M.; Sainsbury, F.; D’aoust, M.-A.; Michaud, D. A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast. Plant Biotechnol. J. 2011, 10, 83–94. [Google Scholar] [CrossRef]
- Robert, S.; Khalf, M.; Goulet, M.-C.; D’aoust, M.-A.; Sainsbury, F.; Michaud, D. Protection of Recombinant Mammalian Antibodies from Development-Dependent Proteolysis in Leaves of Nicotiana benthamiana. PLOS ONE 2013, 8, e70203. [Google Scholar] [CrossRef]
- Grosse-Holz, F.; Madeira, L.; Zahid, M.A.; Songer, M.; Kourelis, J.; Fesenko, M.; Ninck, S.; Kaschani, F.; Kaiser, M.; van der Hoorn, R.A. Three unrelated protease inhibitors enhance accumulation of pharmaceutical recombinant proteins in Nicotiana benthamiana. Plant Biotechnol. J. 2018, 16, 1797–1810. [Google Scholar] [CrossRef]
- Singh, V.K.; Chaturvedi, D.; Pundir, S.; Kumar, D.; Sharma, R.; Kumar, S.; Sharma, S.; Sharma, S. GWAS scans of cereal cyst nematode (Heterodera avenae) resistance in Indian wheat germplasm. Mol. Genet. Genom. 2023, 298, 579–601. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Sharma, S.; Sharma, R.; Pundir, S.; Singh, V.K.; Chaturvedi, D.; Singh, B.; Kumar, S.; Sharma, S. Genome-wide association study in hexaploid wheat identifies novel genomic regions associated with resistance to root lesion nematode (Pratylenchus thornei). Sci. Rep. 2021, 11, 3572. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, D.; Pundir, S.; Singh, V.K.; Kumar, D.; Sharma, R.; Röder, M.S.; Sharma, S.; Sharma, S. Identification of genomic regions associated with cereal cyst nematode (Heterodera avenae Woll.) resistance in spring and winter wheat. Sci. Rep. 2023, 13, 5916. [Google Scholar] [CrossRef] [PubMed]
- Pundir, S.; Sharma, R.; Kumar, D.; Singh, V.K.; Chaturvedi, D.; Kanwar, R.S.; Röder, M.S.; Börner, A.; Ganal, M.W.; Gupta, P.K.; et al. QTL mapping for resistance against cereal cyst nematode (Heterodera avenae Woll.) in wheat (Triticum aestivum L.). Sci. Rep. 2022, 12, 9586. [Google Scholar] [CrossRef]
- Pundir, S.; Singh, V.K.; Kumar, S.; Chaturvedi, D.; Kumar, D.; Kanwar, R.S.; Kumar, A.; Börner, A.; Sharma, S.; Sharma, S. Validation of resistance to cereal cyst nematode (Heterodera avenae) and yield performance study in doubled haploid lines of wheat (Triticum aestivum L.). Genet. Resour. Crop. Evol. 2023, 70, 107–113. [Google Scholar] [CrossRef]
- Lilley CJ, Devlin P, Urwin PE, Atkinson HJ. Parasitic nematodes, proteinases and transgenic plants. Parasitology Today 1999;15(10):414-7.
- Ali, M.A.; Azeem, F.; Abbas, A.; Joyia, F.A.; Li, H.; Dababat, A.A. Transgenic Strategies for Enhancement of Nematode Resistance in Plants. Front. Plant Sci. 2017, 8, 750. [Google Scholar] [CrossRef]
- Fuller VL, Lilley CJ, Urwin PE. Nematode resistance. New Phytol 2008;180(1):27-44. [CrossRef]
- Vishnudasan, D.; Tripathi, M.; Rao, U.; Khurana, P. Assessment of Nematode Resistance in Wheat Transgenic Plants Expressing Potato Proteinase Inhibitor (PIN2) Gene. Transgenic Res. 2005, 14, 665–675. [Google Scholar] [CrossRef]
- Hartl M, Giri AP, Kaur H, Baldwin IT. The multiple functions of plant serine protease inhibitors: defense against herbivores and beyond. Plant Signal Behav 2011;6(7):1009-11. [CrossRef]
- Qu, L.-J.; Chen, J.; Liu, M.; Pan, N.; Okamoto, H.; Lin, Z.; Li, C.; Li, D.; Wang, J.; Zhu, G.; et al. Molecular Cloning and Functional Analysis of a Novel Type of Bowman-Birk Inhibitor Gene Family in Rice. Plant Physiol. 2003, 133, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Yoo, B.-C.; Aoki, K.; Xiang, Y.; Campbell, L.R.; Hull, R.J.; Xoconostle-Cázares, B.; Monzer, J.; Lee, J.-Y.; Ullman, D.E.; Lucas, W.J. Characterization of Cucurbita maxima Phloem Serpin-1 (CmPS-1). J. Biol. Chem. 2000, 275, 35122–35128. [Google Scholar] [CrossRef]
- Petersen, M.l.C.; Hejgaard, J.; Thompson, G.A.; Schulz, A. Cucurbit phloem serpins are graft-transmissible and appear to be resistant to turnover in the sieve element–companion cell complex. J. Exp. Bot. 2005, 56, 3111–3120. [Google Scholar] [CrossRef] [PubMed]
- Lingling L, Lei J, Song M, Li L, Cao B. Study on transformation of cowpea trypsin inhibitor gene into cauli flower (Brassica oleracea L. var. botrytis). Afr J Biotechnol 2005;4:45–49.
- Pujol M, Hernandez CA, Armas R, Coll Y, Alfonso-Rubi J, Perez M, Ayra C, González A. Inhibition of Heliothis virescens larvae growth in transgenic tobacco plants expressing cowpea trypsin inhibitor. Biotechnol 2005;22:27–130.
- Major, I.T.; Constabel, C.P. Functional Analysis of the Kunitz Trypsin Inhibitor Family in Poplar Reveals Biochemical Diversity and Multiplicity in Defense against Herbivores. Plant Physiol. 2007, 146, 888–903. [Google Scholar] [CrossRef]
- Azzouz, H.; Cherqui, A.; Campan, E.; Rahbé, Y.; Duport, G.; Jouanin, L.; Kaiser, L.; Giordanengo, P. Effects of plant protease inhibitors, oryzacystatin I and soybean Bowman–Birk inhibitor, on the aphid Macrosiphum euphorbiae (Homoptera, Aphididae) and its parasitoid Aphelinus abdominalis (Hymenoptera, Aphelinidae). J. Insect Physiol. 2005, 51, 75–86. [Google Scholar] [CrossRef]
- Botelho-Júnior, S.; Machado, O.L.T.; Fernandes, K.V.S.; Lemos, F.J.A.; Perdizio, V.A.; Oliveira, A.E.A.; Monteiro, L.R.; Filho, M.L.; Jacinto, T. Defense response in non-genomic model species: methyl jasmonate exposure reveals the passion fruit leaves’ ability to assemble a cocktail of functionally diversified Kunitz-type trypsin inhibitors and recruit two of them against papain. Planta 2014, 240, 345–356. [Google Scholar] [CrossRef]
- Migliolo, L.; de Oliveira, A.S.; Santos, E.A.; Franco, O.L.; de Sales, M.P. Structural and mechanistic insights into a novel non-competitive Kunitz trypsin inhibitor from Adenanthera pavonina L. seeds with double activity toward serine- and cysteine-proteinases. J. Mol. Graph. Model. 2010, 29, 148–156. [Google Scholar] [CrossRef]
- Smigocki, A.C.; Ivic-Haymes, S.; Li, H.; Savić, J. Pest Protection Conferred by a Beta vulgaris Serine Proteinase Inhibitor Gene. PLOS ONE 2013, 8, e57303. [Google Scholar] [CrossRef]
- Hamza, R.; Pérez-Hedo, M.; Urbaneja, A.; Rambla, J.L.; Granell, A.; Gaddour, K.; Beltrán, J.P.; Cañas, L.A. Expression of two barley proteinase inhibitors in tomato promotes endogenous defensive response and enhances resistance to Tuta absoluta. BMC Plant Biol. 2018, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Cheng Z, Li JF, Niu Y, Zhang XC, Woody OZ, Xiong Y, Djonović S, Millet Y, Bush J, McConkey BJ, et al. Pathogen-secreted proteases activate a novel plant immune pathway. Nature 2015;521:213–216. [CrossRef]
- Ye, X.; Ng, T.; Rao, P. A Bowman–Birk-Type Trypsin-Chymotrypsin Inhibitor from Broad Beans. Biochem. Biophys. Res. Commun. 2001, 289, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Pekkarinen AI, Longstaff C, Jones BL. Kinetics of the inhibition of fusarium serine proteinases by barley (Hordeum vulgare L.) inhibitors. J Agric Food Chem 2007;55:2736–2742. [CrossRef]
- Pariani, S.; Contreras, M.; Rossi, F.R.; Sander, V.; Corigliano, M.G.; Simón, F.; Busi, M.V.; Gomez-Casati, D.F.; Pieckenstain, F.L.; Duschak, V.G.; et al. Characterization of a novel Kazal-type serine proteinase inhibitor of Arabidopsis thaliana. Biochimie 2016, 123, 85–94. [Google Scholar] [CrossRef]
- Komarnytsky, S.; Borisjuk, N.; Yakoby, N.; Garvey, A.; Raskin, I. Cosecretion of Protease Inhibitor Stabilizes Antibodies Produced by Plant Roots. Plant Physiol. 2006, 141, 1185–1193. [Google Scholar] [CrossRef]
- Kim, T.-G.; Kim, H.-M.; Lee, H.-J.; Shin, Y.-J.; Kwon, T.-H.; Lee, N.-J.; Jang, Y.-S.; Yang, M.-S. Reduced protease activity in transformed rice cell suspension cultures expressing a proteinase inhibitor. Protein Expr. Purif. 2007, 53, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Martin, J.A.; Wang, Z. Next-generation transcriptome assembly. Nat. Rev. Genet. 2011, 12, 671–682. [Google Scholar] [CrossRef]
- Clamp, M.; Fry, B.; Kamal, M.; Xie, X.; Cuff, J.; Lin, M.F.; Kellis, M.; Lindblad-Toh, K.; Lander, E.S. Distinguishing protein-coding and noncoding genes in the human genome. Proc. Natl. Acad. Sci. 2007, 104, 19428–19433. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Shendure J. The beginning of the end for microarrays? Nat Methods 2008;5(7):585-7. [CrossRef]
- Maloof, J.; Jk, P.; Jc, M.; Aa, P.; Jf, D.; Be, E.; E, N.; Jb, V.; M, S.; Y, G.; et al. Faculty Opinions recommendation of Understanding mechanisms underlying human gene expression variation with RNA sequencing.. 2010, 464. . [CrossRef]
- Tuch, B.B.; Laborde, R.R.; Xu, X.; Gu, J.; Chung, C.B.; Monighetti, C.K.; Stanley, S.J.; Olsen, K.D.; Kasperbauer, J.L.; Moore, E.J.; et al. Tumor Transcriptome Sequencing Reveals Allelic Expression Imbalances Associated with Copy Number Alterations. PLOS ONE 2010, 5, e9317–e9317. [Google Scholar] [CrossRef] [PubMed]
- Filichkin, S.A.; Priest, H.D.; Givan, S.A.; Shen, R.; Bryant, D.W.; Fox, S.E.; Wong, W.-K.; Mockler, T.C. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res. 2009, 20, 45–58. [Google Scholar] [CrossRef]
- Kong, L.-A.; Wu, D.-Q.; Huang, W.-K.; Peng, H.; Wang, G.-F.; Cui, J.-K.; Liu, S.-M.; Li, Z.-G.; Yang, J.; Peng, D.-L. Large-scale identification of wheat genes resistant to cereal cyst nematode Heterodera avenae using comparative transcriptomic analysis. BMC Genom. 2015, 16, 1–18. [Google Scholar] [CrossRef]
- Cao, K.; Li, H.; Wang, Q.; Zhao, P.; Zhu, G.; Fang, W.; Chen, C.; Wang, X.; Wang, L. Comparative transcriptome analysis of genes involved in the response of resistant and susceptible peach cultivars to nematode infection. Sci. Hortic. 2017, 215, 20–27. [Google Scholar] [CrossRef]
- Chen, C.; Cui, L.; Chen, Y.; Zhang, H.; Liu, P.; Wu, P.; Qiu, D.; Zou, J.; Yang, D.; Yang, L.; et al. Transcriptional responses of wheat and the cereal cyst nematode Heterodera avenae during their early contact stage. Sci. Rep. 2017, 7, 14471–14471. [Google Scholar] [CrossRef]
- Kumar, M.; Gantasala, N.P.; Roychowdhury, T.; Thakur, P.K.; Banakar, P.; Shukla, R.N.; Jones, M.G.K.; Rao, U. De Novo Transcriptome Sequencing and Analysis of the Cereal Cyst Nematode, Heterodera avenae. PLOS ONE 2014, 9, e96311. [Google Scholar] [CrossRef]
- Shukla, N.; Yadav, R.; Kaur, P.; Rasmussen, S.; Goel, S.; Agarwal, M.; Jagannath, A.; Gupta, R.; Kumar, A. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses. Mol. Plant Pathol. 2018, 19, 615–633. [Google Scholar] [CrossRef]
- Jain, K.K.; Kumar, A.; Shankar, A.; Pandey, D.; Chaudhary, B.; Sharma, K.K. De novo transcriptome assembly and protein profiling of copper-induced lignocellulolytic fungus Ganoderma lucidum MDU-7 reveals genes involved in lignocellulose degradation and terpenoid biosynthetic pathways. Genomics 2019, 112, 184–198. [Google Scholar] [CrossRef]
- Shankar, B.A.; Kaushik, P.; Alyemeni, M.N.; Alansi, S.; Yousuf, P.Y. Transcriptional alterations associated with overexpression of a chlorogenic acid pathway gene in eggplant fruit. J. King Saud Univ. - Sci. 2023, 35. [Google Scholar] [CrossRef]
- Kaushik, P.; Kumar, S. Data of de novo assembly of the leaf transcriptome in Aegle marmelos. Data Brief 2018, 19, 700–703. [Google Scholar] [CrossRef]
- Kaushik, P.; Kumar, S. Transcriptome Analysis of Bael (Aegle marmelos (L.) Corr.) a Member of Family Rutaceae. Forests 2018, 9, 450. [Google Scholar] [CrossRef]
- Zhao, W.; Pollack, J.L.; Blagev, D.P.; Zaitlen, N.; McManus, M.T.; Erle, D.J. Massively parallel functional annotation of 3′ untranslated regions. Nat. Biotechnol. 2014, 32, 387–391. [Google Scholar] [CrossRef]
- Shulaev, V.; Cortes, D.; Miller, G.; Mittler, R. Metabolomics for plant stress response. Physiol. Plant. 2008, 132, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Sung J, Lee S, Lee Y, Ha S, Song B, Kim T, Waters BM, Krishnan HB. Metabolomic profiling from leaves and roots of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus or potassium-deficient condition. Plant Sci 2015;241:55-64. [CrossRef]
- Palomares-Rius, J.E.; Kikuchi, T. -Omics fields of study related to plant-parasitic nematodes. J. Integr. OMICS 2013, 3. [Google Scholar] [CrossRef]
- Che-Othman, M.H.; Jacoby, R.P.; Millar, A.H.; Taylor, N.L. Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. New Phytol. 2019, 225, 1166–1180. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Carroll, A.J.; Estavillo, G.M.; Rebetzke, G.J.; Pogson, B.J. Wheat drought tolerance in the field is predicted by amino acid responses to glasshouse-imposed drought. J. Exp. Bot. 2019, 70, 4931–4948. [Google Scholar] [CrossRef] [PubMed]
- Yang Han Y, xiu Li A, Li F, rong Zhao M, Wang W. Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. Plant Physiol Biochem 2012;54:49-58. [CrossRef]
- Nam, K.-H.; Kim, H.J.; Pack, I.-S.; Chung, Y.S.; Kim, S.Y.; Kim, C.-G. Global metabolite profiling based on GC–MS and LC–MS/MS analyses in ABF3-overexpressing soybean with enhanced drought tolerance. Appl. Biol. Chem. 2019, 62, 15. [Google Scholar] [CrossRef]
- Seybold H, Demetrowitsch T, Hassani MA, Szymczak S, Reim E, Haueisen J, Rühlemann M, Franke A, Schwarz K, Stukenbrock EH. Hemibiotrophic fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. BioRxiv 2019:702373.
- Cuperlovic-Culf, M.; Wang, L.; Forseille, L.; Boyle, K.; Merkley, N.; Burton, I.; Fobert, P.R. Metabolic Biomarker Panels of Response to Fusarium Head Blight Infection in Different Wheat Varieties. PLOS ONE 2016, 11, e20592. [Google Scholar] [CrossRef]
- Wu, C.-T.; Morris, J.R. Genes, Genetics, and Epigenetics: A Correspondence. Science 2001, 293, 1103–1105. [Google Scholar] [CrossRef]
- Grant-Downton, R.T.; Dickinson, H.G. Epigenetics and its Implications for Plant Biology. 1. The Epigenetic Network in Plants. Ann. Bot. 2005, 96, 1143–1164. [Google Scholar] [CrossRef]
- Grant-Downton, R.T.; Dickinson, H.G. Epigenetics and its Implications for Plant Biology 2. The ‘Epigenetic Epiphany’: Epigenetics, Evolution and Beyond. Ann. Bot. 2005, 97, 11–27. [Google Scholar] [CrossRef]
- Donà, M.; Scheid, O.M. DNA Damage Repair in the Context of Plant Chromatin. Plant Physiol. 2015, 168, 1206–1218. [Google Scholar] [CrossRef]
- Probst, A.V.; Scheid, O.M. Stress-induced structural changes in plant chromatin. Curr. Opin. Plant Biol. 2015, 27, 8–16. [Google Scholar] [CrossRef]
- Henderson, I.R.; Jacobsen, S.E. Epigenetic inheritance in plants. Nature 2007, 447, 418–424. [Google Scholar] [CrossRef]
- Mirouze, M.; Paszkowski, J. Epigenetic contribution to stress adaptation in plants. Curr. Opin. Plant Biol. 2011, 14, 267–274. [Google Scholar] [CrossRef]
- Jiang, D.; Berger, F. DNA replication–coupled histone modification maintains Polycomb gene silencing in plants. Science 2017, 357, 1146–1149. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Jacobsen, S.E. Epigenetic modifications in plants: an evolutionary perspective. Curr. Opin. Plant Biol. 2011, 14, 179–186. [Google Scholar] [CrossRef]
- Duan, H.; Li, J.; Zhu, Y.; Jia, W.; Wang, H.; Jiang, L.; Zhou, Y. Responsive changes of DNA methylation in wheat (Triticum aestivum) under water deficit. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Li, S.; He, X.; Gao, Y.; Zhou, C.; Chiang, V.L.; Li, W. Histone Acetylation Changes in Plant Response to Drought Stress. Genes 2021, 12, 1409. [Google Scholar] [CrossRef]
- Leonetti, P.; Molinari, S. Epigenetic and Metabolic Changes in Root-Knot Nematode-Plant Interactions. Int. J. Mol. Sci. 2020, 21, 7759. [Google Scholar] [CrossRef]
- Shahzad, R.; Iqbal, M.M.; Jamil, S.; Afza, N.; Ahmad, S.; Nisar, A.; Kanwal, S.; Yousaf, M.I.; Abbas, G.; Akhter, S. Harnessing the potential of modern omics approaches to study plant biotic and abiotic stresses. 2021, 101–122. [CrossRef]
- Chen, K.; Gao, C. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep. 2013, 33, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Gao, C. Genome editing in crops: from bench to field. Natl. Sci. Rev. 2014, 2, 13–15. [Google Scholar] [CrossRef]
- Kaur, R.; Choudhury, A.; Chauhan, S.; Ghosh, A.; Tiwari, R.; Rajam, M.V. RNA interference and crop protection against biotic stresses. Physiol. Mol. Biol. Plants 2021, 27, 2357–2377. [Google Scholar] [CrossRef]
- Bibikova, M.; Carroll, D.; Segal, D.J.; Trautman, J.K.; Smith, J.; Kim, Y.-G.; Chandrasegaran, S. Stimulation of Homologous Recombination through Targeted Cleavage by Chimeric Nucleases. Mol. Cell. Biol. 2001, 21, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature. 2009;459:437–41. [CrossRef]
- Ainley, W.M.; Sastry-Dent, L.; Welter, M.E.; Murray, M.G.; Zeitler, B.; Amora, R.; Corbin, D.R.; Miles, R.R.; Arnold, N.L.; Strange, T.L.; et al. Trait stacking via targeted genome editing. Plant Biotechnol. J. 2013, 11, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Cantos C, Francisco P, Trijatmiko KR, Slamet-Loedin I, Chadha-Mohanty PK, Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Front Plant Sci. 2014;5:302. [CrossRef]
- Gaj, T.; Sirk, S.J.; Shui, S.-L.; Liu, J. Genome-Editing Technologies: Principles and Applications. Cold Spring Harb. Perspect. Biol. 2016, 8, a023754. [Google Scholar] [CrossRef]
- Huo, Z.; Tu, J.; Xu, A.; Li, Y.; Wang, D.; Liu, M.; Zhou, R.; Zhu, D.; Lin, Y.; Gingold, J.A.; et al. Generation of a heterozygous p53 R249S mutant human embryonic stem cell line by TALEN-mediated genome editing. Stem Cell Res. 2018, 34, 101360. [Google Scholar] [CrossRef]
- Khan, S.H. Genome-Editing Technologies: Concept, Pros, and Cons of Various Genome-Editing Techniques and Bioethical Concerns for Clinical Application. Mol. Ther. - Nucleic Acids 2019, 16, 326–334. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, X.; Shan, Q.; Zhang, Y.; Liu, J.; Gao, C.; Qiu, J.-L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 2014, 32, 947–951. [Google Scholar] [CrossRef]
- Char, S.N.; Unger-Wallace, E.; Frame, B.; Briggs, S.A.; Main, M.; Spalding, M.H.; Vollbrecht, E.; Wang, K.; Yang, B. Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnol. J. 2015, 13, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Altpeter, F. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol. Biol. 2016, 92, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Kannan B, Jung JH, Moxley GW, Lee SM, Altpeter F. TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnol J. 2018;16:856–66. [CrossRef]
- Haun, W.; Coffman, A.; Clasen, B.M.; Demorest, Z.L.; Lowy, A.; Ray, E.; Retterath, A.; Stoddard, T.; Juillerat, A.; Cedrone, F.; et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol. J. 2014, 12, 934–940. [Google Scholar] [CrossRef]
- Demorest, Z.L.; Coffman, A.; Baltes, N.J.; Stoddard, T.J.; Clasen, B.M.; Luo, S.; Retterath, A.; Yabandith, A.; Gamo, M.E.; Bissen, J.; et al. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol. 2016, 16, 1–8. [Google Scholar] [CrossRef]
- Muschietti, J.; T, K.; D, S.; L, R.; S, C.; B, D.; Ml, N.; J, G.; Z, C.; J, M.; et al. Faculty Opinions recommendation of MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. . 2017, 542. [Google Scholar] [CrossRef]
- Sun, Z.; Li, N.; Huang, G.; Xu, J.; Pan, Y.; Wang, Z.; Tang, Q.; Song, M.; Wang, X. Site-Specific Gene Targeting Using Transcription Activator-Like Effector (TALE)-Based Nuclease inBrassica oleracea. J. Integr. Plant Biol. 2013, 55, 1092–1103. [Google Scholar] [CrossRef] [PubMed]
- Ishino Y, Shinagawa H, Makino K, Amemura M, and Nakatura A. Nucleotide sequence of the iap gene, responsible for alkaline phosphataseisoenzyme conversion in Escherichia coli, and identification of the gene product.J. Bacteriol. 1987;169, 5429–5433. [CrossRef]
- Mojica, F.J.M.; Rodriguez-Valera, F. The discovery of CRISPR in archaea and bacteria. FEBS J. 2016, 283, 3162–3169. [Google Scholar] [CrossRef]
- Mojica F J M, Díez-Villaseñor C, Soria E, Juez G, Francisco J, Mojica M. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 2002; 36, 244–246. [CrossRef]
- Bolotin A, Quinquis B, Sorokin A, and Ehrlich S D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005;1066, 2551–2561.
- Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar] [CrossRef]
- Makarova, K.S.; Wolf, Y.I.; Alkhnbashi, O.S.; Costa, F.; Shah, S.A.; Saunders, S.J.; Barrangou, R.; Brouns, S.J.J.; Charpentier, E.; Haft, D.H.; et al. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 2015, 13, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Makarova KS, Wolf YI, Koonin EV. Classification and nomenclature of CRISPR-Cas systems: Where from here? CRISPR J. 2018, 1, 325–336. [CrossRef]
- Koonin, E.V.; Makarova, K.S.; Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 2017, 37, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yang, X.; Yu, Y.; Si, X.; Zhai, X.; Zhang, H.; Dong, W.; Gao, C.; Xu, C. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 2018, 36, 1160–1163. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhou, H.; Ma, X.; Yang, H.; Wang, P.; Wang, G.; Zheng, L.; Zhang, Y.; Liu, X. Genome-Wide Identification and Characterization of Main Histone Modifications in Sorghum Decipher Regulatory Mechanisms Involved by mRNA and Long Noncoding RNA Genes. J. Agric. Food Chem. 2021, 69, 2337–2347. [Google Scholar] [CrossRef]
- Kavuri, N.R.; Ramasamy, M.; Qi, Y.; Mandadi, K. Applications of CRISPR/Cas13-Based RNA Editing in Plants. Cells 2022, 11, 2665. [Google Scholar] [CrossRef]
- Rodríguez-Leal, D.; Lemmon, Z.H.; Man, J.; Bartlett, M.E.; Lippman, Z.B. Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. Cell 2017, 171, 470–480. [Google Scholar] [CrossRef]
- Zhang, H.; Si, X.; Ji, X.; Fan, R.; Liu, J.; Chen, K.; Wang, D.; Gao, C. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 2018, 36, 894–898. [Google Scholar] [CrossRef]
- Zhou, H.; He, M.; Li, J.; Chen, L.; Huang, Z.; Zheng, S.; Zhu, L.; Ni, E.; Jiang, D.; Zhao, B.; et al. Development of Commercial Thermo-sensitive Genic Male Sterile Rice Accelerates Hybrid Rice Breeding Using the CRISPR/Cas9-mediated TMS5 Editing System. Sci. Rep. 2016, 6, 37395. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Zhou, Z.; Wu, P.; Fang, M.; Pan, X.; Lin, Q.; Luo, W.; Wu, G.; Li, H. Reassessment of the Four Yield-related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System. Front. Plant Sci. 2016, 7, 377–377. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Abulfaraj, A.; Idris, A.; Ali, S.; Tashkandi, M.; Mahfouz, M.M. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 2015, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Zhang, H.; Zhang, Y.; Wang, Y.; Gao, C. Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants 2015, 1, 15144. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Zhang, F.; Zhong, Z.; Chen, R.; Wang, Y.; Chang, L.; Bock, R.; Nie, B.; Zhang, J. Generation of virus-resistant potato plants by RNA genome targeting. Plant Biotechnol. J. 2019, 17, 1814–1822. [Google Scholar] [CrossRef] [PubMed]
- Endo, M.; Mikami, M.; Toki, S. Biallelic Gene Targeting in Rice. Plant Physiol. 2015, 170, 667–677. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.-B.; Xing, A.; Moon, B.P.; Koellhoffer, J.P.; Huang, L.; Ward, R.T.; Clifton, E.; Falco, S.C.; Cigan, A.M. Cas9-Guide RNA Directed Genome Editing in Soybean. Plant Physiol. 2015, 169, 960–970. [Google Scholar] [CrossRef]
- Svitashev, S.; Young, J.K.; Schwartz, C.; Gao, H.; Falco, S.C.; Cigan, A.M. Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA. Plant Physiol. 2015, 169, 931–945. [Google Scholar] [CrossRef]
- Butler, N.M.; Baltes, N.J.; Voytas, D.F.; Douches, D.S. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases. Front. Plant Sci. 2016, 7, 1045. [Google Scholar] [CrossRef]
- Sauer, N.J.; Narváez-Vásquez, J.; Mozoruk, J.; Miller, R.B.; Warburg, Z.J.; Woodward, M.J.; Mihiret, Y.A.; Lincoln, T.A.; Segami, R.E.; Sanders, S.L.; et al. Oligonucleotide-Mediated Genome Editing Provides Precision and Function to Engineered Nucleases and Antibiotics in Plants. Plant Physiol. 2016, 170, 1917–1928. [Google Scholar] [CrossRef] [PubMed]
- Hummel, A.W.; Chauhan, R.D.; Cermak, T.; Mutka, A.M.; Vijayaraghavan, A.; Boyher, A.; Starker, C.G.; Bart, R.; Voytas, D.F.; Taylor, N.J. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol. J. 2017, 16, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Shi H, Tschudi C, Ullu E. An unusual Dicer-like1 protein fuels the RNA interference pathway in Trypanosoma brucei Rna 2006;12(12):2063-72. [CrossRef]
- Jeffares, D.C.; Poole, A.M.; Penny, D. Relics from the RNA World. J. Mol. Evol. 1998, 46, 18–36. [Google Scholar] [CrossRef] [PubMed]
- Engelhart AE, Adamala KP, Szostak JW. A simple physical mechanism enables homeostasis in primi-tive cells. Nat Chem. 2016;8(5):448–453. [CrossRef]
- Jacob, F.; Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 1961, 3, 318–356. [Google Scholar] [CrossRef]
- Wagner EGH, Simons RW. ANTISENSE RNA CONTROL IN BACTERIA, PHAGES, AND PLAS-MIDS. Ann Rev Microbiol. 1994;48(1):713–42. [CrossRef]
- Nowotny, M.; Yang, W. Structural and functional modules in RNA interference. Curr. Opin. Struct. Biol. 2009, 19, 286–293. [Google Scholar] [CrossRef]
- Cerutti, H.; Casas-Mollano, J.A. On the origin and functions of RNA-mediated silencing: from protists to man. Curr. Genet. 2006, 50, 81–99. [Google Scholar] [CrossRef] [PubMed]
- MacRae, I.J.; Zhou, K.; Li, F.; Repic, A.; Brooks, A.N.; Cande, W.Z.; Adams, P.D.; Doudna, J.A. Structural Basis for Double-Stranded RNA Processing by Dicer. Science 2006, 311, 195–198. [Google Scholar] [CrossRef]
- Keeling, P.J.; Burger, G.; Durnford, D.G.; Lang, B.F.; Lee, R.W.; Pearlman, R.E.; Roger, A.J.; Gray, M.W. The tree of eukaryotes. Trends Ecol. Evol. 2005, 20, 670–676. [Google Scholar] [CrossRef]
- Makarova, K.S. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res. 2005, 33, 4626–4638. [Google Scholar] [CrossRef]
- Hutvagner, G.; Simard, M.J. Argonaute proteins: key players in RNA silencing. Nat. Rev. Mol. Cell Biol. 2008, 9, 22–32. [Google Scholar] [CrossRef]
- Nowotny M and Yang W et al. Structural and functional modules in RNA interference. Curr Opin Struct Biol. 2009 June ; 19(3): 286–293. [CrossRef]
- Prabhu, A.S.; Filippi, M.C.; Silva, G.B.; Lobo, V.L.S.; Morais, O.P. An Unprecedented Outbreak of Rice Blast on a Newly Released Cultivar BRS Colosso in Brazil. 2009, 257–266. [CrossRef]
- Saini, D.K.; Devi, P.; Kaushik, P. Advances in Genomic Interventions for Wheat Biofortification: A Review. Agronomy 2020, 10, 62. [Google Scholar] [CrossRef]
- Kumar, A.; Longmei, N.; Kumar, P.; Kaushik, P.; Valenciana, U.P.d.V.I.d.C.Y.M.d.l.A. Molecular Marker Analysis of Genetic Diversity in Maize: A Review. OBM Genet. 2021, 6, 1. [Google Scholar] [CrossRef]
- Chugh V, Kaur D, Purwar S, Kaushik P, Sharma V, Kumar H, Rai A, Singh CM, Kamaluddin, Dubey RB. Applications of Molecular Markers for Developing Abiotic-Stress-Resilient Oilseed Crops Life 2022;13(1):88.
- Gouda, G.; Gupta, M.K.; Donde, R.; Mohapatra, T.; Vadde, R.; Behera, L. Marker-assisted selection for grain number and yield-related traits of rice (Oryza sativa L.). Physiol. Mol. Biol. Plants 2020, 26, 885–898. [Google Scholar] [CrossRef] [PubMed]
- Das G, Patra JK, Baek KH. Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking. Front Plant Sci 2017;8:985. [CrossRef]
- Das, G.; Rao, G.J.N. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front. Plant Sci. 2015, 6, 698. [Google Scholar] [CrossRef] [PubMed]
- Jamaloddin M, Durga Rani CV, Swathi G, Anuradha C, Vanisri S, Rajan CP, K Das G, Rao GJ. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front Plant Sci 2015;6:698. [CrossRef]
- Hanson, P.; Lu, S.-F.; Wang, J.-F.; Chen, W.; Kenyon, L.; Tan, C.-W.; Tee, K.L.; Wang, Y.-Y.; Hsu, Y.-C.; Schafleitner, R.; et al. Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Sci. Hortic. 2016, 201, 346–354. [Google Scholar] [CrossRef]
- Calayugan, M.I.C.; Formantes, A.K.; Amparado, A.; Descalsota-Empleo, G.I.; Nha, C.T.; Inabangan-Asilo, M.A.; Swe, Z.M.; Hernandez, J.E.; Borromeo, T.H.; Lalusin, A.G.; et al. Genetic Analysis of Agronomic Traits and Grain Iron and Zinc Concentrations in a Doubled Haploid Population of Rice (Oryza sativa L.). Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Eliby, S.; Bekkuzhina, S.; Kishchenko, O.; Iskakova, G.; Kylyshbayeva, G.; Jatayev, S.; Soole, K.; Langridge, P.; Borisjuk, N.; Shavrukov, Y. Developments and prospects for doubled haploid wheat. Biotechnol. Adv. 2022, 60, 108007. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, S.K. Anther Culture for Double Haploid Breeding in Rice-a Way Forward. Rice Genom. Genet. 2018, 9. [Google Scholar] [CrossRef]
- Wijerathna-Yapa, A.; Ramtekey, V.; Ranawaka, B.; Basnet, B.R. Applications of In Vitro Tissue Culture Technologies in Breeding and Genetic Improvement of Wheat. Plants 2022, 11, 2273. [Google Scholar] [CrossRef]
- Senadhira, D.; Zapata-Arias, F.; Gregorio, G.; Alejar, M.; de la Cruz, H.; Padolina, T.; Galvez, A. Development of the first salt-tolerant rice cultivar through indica/indica anther culture. Field Crop. Res. 2002, 76, 103–110. [Google Scholar] [CrossRef]
- Pauk J, Jancso M, Simon-Kiss I. Rice doubled haploids and breeding. Advances in haploid production in higher plants. 2009;189-97.
- Rout, P.; Naik, N.; Ngangkham, U.; Verma, R.L.; Katara, J.L.; Singh, O.N.; Samantaray, S. Doubled Haploids generated through anther culture from an elite long duration rice hybrid, CRHR32: Method optimization and molecular characterization. Plant Biotechnol. 2016, 33, 177–186. [Google Scholar] [CrossRef]
- Sadasivaiah RS, Perkovic SM, Pearson DC, Postman B, Beres BL. Registration of'AC Andrew'wheat. Crop Sci 2004;44(2):696-8.
- Ming-hui K, Yan H, Bing-yan H, Yong-ying Z, Shi-jie W, Li-juan M, Xin-you Z. Breeding of newly licensed wheat variety Huapei 8 and improved breeding strategy by anther culture. Afr J Biotechnol 2011;10(85):19701-6. [CrossRef]
- Elhaddoury, J.; Lhaloui, S.; Udupa, S.; Moatassim, B.; Taiq, R.; Rabeh, M.; Kamlaoui, M.; Hammadi, M. Registration of ‘Kharoba’: A Bread Wheat Cultivar Developed through Doubled Haploid Breeding. J. Plant Regist. 2012, 6, 169–173. [Google Scholar] [CrossRef]
- Pauk J, Lantos C, Cseuz L, Papp M, Óvári J, Beke B, PUGRIS T. GK Déva’dihaploid módszer segítségével el állított új szi búzafajta (‘GK Déva’, new released winter wheat variety using dihaploid method). XXVI. Növénynemesítési Tudományos Napok, Szeged, Hungary. 2020:04-5.
- Mondal B, Chaturvedi SK, Das A, Kumar Y, Yadav A, Sewak S, Singh NP. Embryo rescue and chromosomal manipulations. In Chickpea: Crop wild relatives for enhancing genetic gains 2020;95-130. Academic Press.
- Avila-Peltroche, J.; Won, B.Y.; Cho, T.O. An improved protocol for protoplast production, culture, and whole plant regeneration of the commercial brown seaweed Undaria pinnatifida. Algal Res. 2022, 67. [Google Scholar] [CrossRef]
- Tomiczak, K.; Adamus, A.; Cegielska-Taras, T.; Kiełkowska, A.; Smyda-Dajmund, P.; Sosnowska, K.; Szała, L. Tissue Culture Techniques for the Production of Interspecific Hybrids in Poland: History and Achievements. Acta Soc. Bot. Pol. 2022, 91. [Google Scholar] [CrossRef]
- Ranaware, A.S.; Kunchge, N.S.; Lele, S.S.; Ochatt, S.J. Protoplast Technology and Somatic Hybridisation in the Family Apiaceae. Plants 2023, 12, 1060. [Google Scholar] [CrossRef]
- Gieniec, M.; Siwek, J.; Oleszkiewicz, T.; Maćkowska, K.; Klimek-Chodacka, M.; Grzebelus, E.; Baranski, R. Real-time detection of somatic hybrid cells during electrofusion of carrot protoplasts with stably labelled mitochondria. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Bruznican, S.; Eeckhaut, T.; Van Huylenbroeck, J.; De Keyser, E.; De Clercq, H.; Geelen, D. An asymmetric protoplast fusion and screening method for generating celeriac cybrids. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Hsu, C.-T.; Lee, W.-C.; Cheng, Y.-J.; Yuan, Y.-H.; Wu, F.-H.; Lin, C.-S. Genome Editing and Protoplast Regeneration to Study Plant–Pathogen Interactions in the Model Plant Nicotiana benthamiana. Front. Genome Ed. 2021, 2. [Google Scholar] [CrossRef]
- Tefera, A.A. Review on Application of Plant Tissue Culture in Plant Breeding. J. Nat. Sci. Res. 2019, 9, 20–25. [Google Scholar] [CrossRef]
- Ranghoo-Sanmukhiya VM. Somaclonal variation and methods used for its detection. In Propagation and Genetic Manipulation of Plants; Siddique I Ed. Springer: Singapore, 2021:1-8.
- Orłowska, R. Barley somatic embryogenesis-an attempt to modify variation induced in tissue culture. J. Biol. Res. 2021, 28, 1–12. [Google Scholar] [CrossRef]
- Aydin, M.; Arslan, E.; Taspinar, M.S.; Karadayi, G.; Agar, G. Analyses of somaclonal variation in endosperm-supported mature embryo culture of rye (Secale cereale L.). Biotechnol. Biotechnol. Equip. 2016, 30, 1082–1089. [Google Scholar] [CrossRef]
- Rashad SE, Abdel-Tawab FM, Fahmy EM, Sakr MM. Somaclonal Variation from Mature Embryo Ex-Plants of Some Egyptian Barley Genotypes. Egypt J Genet Cytol 2020;49(1). [CrossRef]
- Lantos, C.; Bóna, L.; Nagy, .; Békés, F.; Pauk, J. Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat (Triticum spelta L.) genotypes. Plant Cell, Tissue Organ Cult. (PCTOC) 2018, 133, 385–393. [CrossRef]
- Wang K, Shi L, Liang X, Zhao P, Wang W, Liu J, Chang Y, Hiei Y, Yanagihara C, Du L, Ishida Y. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat Plants 2022;8(2):110-7. [CrossRef]
| PIs Name | Origen | Application | References |
|---|---|---|---|
| AtKTI4, AtKTI5 | Arabidopsis thaliana | spider mite | [37] |
| AtSerpin1 | Arabidopsis thaliana | Insect attack | [38,39] |
| AtWSCP | Arabidopsis thaliana | Herbivore attack | [38,40] |
| UPI | Arabidopsis thaliana | Fungal, insect attack | [41] |
| Potato type 1 | Solanum tuberosum | Nematodes | [42] |
| PCI | Solanum tuberosum | Fungal, insect attack | [43,44] |
| mPI | Zea mays | Fungal, insect attack | [44] |
| SaPIN2b | Solanum americanum | Insect attack | [45] |
| StPin1A, NaPI | Solanum tuberosum | Helicoverpa spp. | [45] |
| PSPI-21, PSPI-22 | Solanum tuberosum | Fungal attack | [46] |
| CDI | Solanum tuberosum | Recombinant proteins | [47,48,49,50] |
| PIN2 | Solanum tuberosum L. | PPNs attack | [56,57,58] |
| Mi | Solanum tuberosum L. | ||
| Hs1pro-1 | Beta vulgaris | ||
| Gpa-2 | Solanum tuberosum L. | ||
| Hero A | Solanum tuberosum L. | ||
| PI-I, PI-II | Solanum nigrum | Insect attack | [60] |
| BBt | Oryza sativa | Fungal attack | [61] |
| CmPS-1 | Cucurbita maxima | Insect attack | [62,64] |
| CPTI | Vigna unguiculata | Insect attack | [64,65] |
| SKTI | Glycine max | Parasitic, insect attack | [66] |
| SbBBI | Glycine max | Aphid parasitoids | [67] |
| Poplar Kunitz trypsin | Populustrichocarpa x Populusdeltoides | Insect attack | [66] |
| PfKI | Passiflora edulis Sims | [68] | |
| ApKTI | Adenantherapavonina | [22,69] | |
| BvSTI | Beta vulgaris | [70] | |
| BTI-CMe | Hordeum vulgare | [71] | |
| BWI-1a | Fagopyrumsculentum | Insect, fungal, bacterial | [72] |
| BBt | Viciafaba | Fungal attack | [73] |
| BBt, C/s, A/s | Hordeum vulgare | Fungal attack | [74] |
| AtKPI-1 | Arabidopsis thaliana | Fungal attack | [75] |
| BBI | Glycine max | Therapeutic proteins | [76] |
| Chymotrypsin and trypsin | Nicotiana alata | Recombinant proteins | [77] |
| Crop | Target gene | Target trait | Reference |
|---|---|---|---|
| Tomato | SP5G, SP, CLV3, GGP1, WUS | Domestication | [145] |
| Rice | ALS | Herbicide | [155] |
| Soybean | ALS | Herbicide | [156] |
| Maize | ALS | Herbicide | [157] |
| Potato | ALS | Herbicide | [158] |
| Flax | EPSPS | Herbicide | [159] |
| Cassava | EPSPS | Herbicide | [160] |
| Maize | ARGOS8 | Drought | [161] |
| Explants | Objectives |
|---|---|
| Non-viable embryos | To derive the F1 plants. |
| Mature and intact seed embryo | To study germination, dormancy, and embryonic growth |
| Immature embryo | Differentiation pattern of embryos to plantlets |
| Surgically dissected embryo | Dedifferentiation and redifferentiation capacity of embryo |
| Adventitious embryos | Facilitation of clonal propagation |
| Undifferentiated seed embryo | Improve seed-plant turnover |
| Interspecific hybrids | |
|---|---|
| Brassica | Nicotiana |
| B. campestris + B. oleracea; $B. oleracea+ B. napus$B. nigra + B. napus$B. carinata + B. napus | N. tabacum + N. alata; N. tabacum+N. glauca;$N. tabacum + N. rustica; N. tabacum+N. octophora$N. mesophila + N. tabacum $N. glutinosa + N. tabacum |
| Intergeneric hybrids | |
| Nicotiana × Lycopersicon; $Nicotiana × Petunia | N. tabacum + L. sculentum; $N. tabacum + P. inflorata |
| Brassica × Eruca | B. napus + E. sativa |
| Atropa × Datura | A. belladonna + D. inoxia |
| Raphanus× Brassica | R. sativus + B. oleracea |
| Solanum × Lycopersicon | S. tuberosum + L. sculentum |
| Moricandia× Brassica | M. arvensis + B. oleracea |
| Intertribal hybrids | |
| Brassica × Arabidopsis | B. Campestris + A. thaliana |
| Thlaspi × Brassica | T. perfoliatum+ B. napus |
| Crop | Invitro technique | Trait | Reference |
|---|---|---|---|
| Hordeum vulgare | Immature zygotic embryo culture | Induced variation | [202] |
| Mature embryo supported by endosperm | Somaclonal variation | [203] | |
| Culture of mature embryo | Somaclonal variation | [204] | |
| Triticum aestivum | Microspore culture | Genetic variation | [205] |
| Zea mays | Immature embryo culture | Genetic variation | [206] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
