Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Laser-Driven Ion Sources Generated by Ns Laser Pulses at the Intensity Range of 1013–1015 W/cm2

Version 1 : Received: 21 July 2023 / Approved: 24 July 2023 / Online: 24 July 2023 (08:53:29 CEST)

A peer-reviewed article of this Preprint also exists.

Giuffrida, L.; Istokskaia, V.; Picciotto, A.; Kantarelou, V.; Barozzi, M.; Dell`Anna, R.; Divoky, M.; Denk, O.; Giubertoni, D.; Grepl, F.; Hadjikyriacou, A.; Hanus, M.; Krasa, J.; Kucharik, M.; Levato, T.; Navratil, P.; Pilar, J.; Schillaci, F.; Stancek, S.; Tosca, M.; Tryus, M.; Velyhan, A.; Lucianetti, A.; Mocek, T.; Margarone, D. A Platform for Laser-Driven Ion Sources Generated with Nanosecond Laser Pulses in the Intensity Range of 1013–1015 W/cm2. Quantum Beam Sci. 2024, 8, 5. Giuffrida, L.; Istokskaia, V.; Picciotto, A.; Kantarelou, V.; Barozzi, M.; Dell`Anna, R.; Divoky, M.; Denk, O.; Giubertoni, D.; Grepl, F.; Hadjikyriacou, A.; Hanus, M.; Krasa, J.; Kucharik, M.; Levato, T.; Navratil, P.; Pilar, J.; Schillaci, F.; Stancek, S.; Tosca, M.; Tryus, M.; Velyhan, A.; Lucianetti, A.; Mocek, T.; Margarone, D. A Platform for Laser-Driven Ion Sources Generated with Nanosecond Laser Pulses in the Intensity Range of 1013–1015 W/cm2. Quantum Beam Sci. 2024, 8, 5.

Abstract

An experimental platform for laser-driven ion (sub-MeV) acceleration and potential applications was recently commissioned at the HiLASE laser facility. The auxiliary beam of the Bivoj laser system operating at GW peak power (~10 J in 5-10 ns) and 1-10 Hz repetition rate enabled a sta-ble production of high-current ion beams of multiple species (Al, Ti, Fe, Si, Cu, Sn). The pro-duced laser-plasma ion sources were fully characterized against the laser intensity on target (1013-1015 W/cm2) by varying the laser energy, focal spot size, and pulse duration. This al-lowed to provide accurate scaling laws of the maximum ion energy for the different target ma-terials investigated. Such experimental scaling laws are presented for the first time in the inves-tigated laser intensity range and for ns-class laser pulses, and allow to provide a qualitative in-terpretation of the laser-plasma interaction underpinning physics, thus to tune the main features of the accelerated ion beams (energy, temperature, and current). Such a detailed study was facil-itated by the large amount of data acquired at high repetition rate (1-10 Hz) provided by the Bivoj laser system. The versatility and tuneability of such high-repetition-rate laser-plasma ion sources are of po-tential interest for multidisciplinary user applications.

Keywords

Laser-Plasma Ion Sources; High Power Laser Applications; Ion Diagnostics

Subject

Physical Sciences, Fluids and Plasmas Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.