Submitted:
20 July 2023
Posted:
21 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Description of Sites
2.2. Sampling Information
2.3. Chemical Analysis
2.4. Health Risk Characterization
2.4.1. Carcinogenic Metals
2.4.2. Polycyclic Aromatic Hydrocarbons (PAHs)
3. Results and Discussion
3.1. Concentration of Carcinogenic Metals and PAHs
3.2. Primary Emission Sources of Carcinogenic Metals and PAHs and Mitigation Strategies
3.3. Cancer Risk Assessment
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, M.C.; Krewski, D.; Pope, C.A.; Chen, Y.; Gapstur, S.M.; Thun, M.J. Long-Term Ambient Fine Particulate Matter Air Pollution and Lung Cancer in a Large Cohort of Never-Smokers. Am J Respir Crit Care Med 2011, 184, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A. v.; Holguin, F.; Hong, Y.; Luepker, R. v.; Mittleman, M.A.; et al. Particulate Matter Air Pollution and Cardiovascular Disease. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC) Global Cancer Observatory. Available online: https://gco.iarc.fr/today/home (accessed on 1 November 2023).
- Cohen, A.J.; Ross Anderson, H.; Ostro, B.; Pandey, K.D.; Krzyzanowski, M.; Künzli, N.; Gutschmidt, K.; Pope, A.; Romieu, I.; Samet, J.M.; et al. The Global Burden of Disease Due to Outdoor Air Pollution. J Toxicol Environ Health A 2005, 68, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Taghvaee, S.; Sowlat, M.H.; Hassanvand, M.S.; Yunesian, M.; Naddafi, K.; Sioutas, C. Source-Specific Lung Cancer Risk Assessment of Ambient PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs) in Central Tehran. Environ Int 2018, 120, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Kalagbor, I.A.; Dibofori-Orji, A.N.; Ekpete, O.A. Exposure to Heavy Metals in Soot Samples and Cancer Risk Assessment in Port Harcourt, Nigeria. J Health Pollut 2019, 9, 191211. [Google Scholar] [CrossRef]
- Park, E.; Kim, D.; Park, K. Monitoring of Ambient Particles and Heavy Metals in a Residential Area of Seoul, Korea. Environ Monit Assess 2008, 137, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tao, S.; Shen, H.; Ma, J. Inhalation Exposure to Ambient Polycyclic Aromatic Hydrocarbons and Lung Cancer Risk of Chinese Population. Proceedings of the National Academy of Sciences 2009, 106, 21063–21067. [Google Scholar] [CrossRef]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front Microbiol 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Boström, C.-E.; Gerde, P.; Hanberg, A.; Jernström, B.; Johansson, C.; Kyrklund, T.; Rannug, A.; Törnqvist, M.; Victorin, K.; Westerholm, R. Cancer Risk Assessment, Indicators, and Guidelines for Polycyclic Aromatic Hydrocarbons in the Ambient Air. Environ Health Perspect 2002, 110, 451–488. [Google Scholar] [CrossRef]
- Wang, F.; Lin, T.; Li, Y.; Ji, T.; Ma, C.; Guo, Z. Sources of Polycyclic Aromatic Hydrocarbons in PM2.5 over the East China Sea, a Downwind Domain of East Asian Continental Outflow. Atmos Environ 2014, 92, 484–492. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Karakitsios, S.P.; Zikopoulos, D.; Nikolaki, S.; Kermenidou, M. Lung Cancer Risk from PAHs Emitted from Biomass Combustion. Environ Res 2015, 137, 147–156. [Google Scholar] [CrossRef]
- Guo, H. Particle-Associated Polycyclic Aromatic Hydrocarbons in Urban Air of Hong Kong. Atmos Environ 2003, 37, 5307–5317. [Google Scholar] [CrossRef]
- Alves, C.A.; Barbosa, C.; Rocha, S.; Calvo, A.; Nunes, T.; Cerqueira, M.; Pio, C.; Karanasiou, A.; Querol, X. Elements and Polycyclic Aromatic Hydrocarbons in Exhaust Particles Emitted by Light-Duty Vehicles. Environmental Science and Pollution Research 2015, 22, 11526–11542. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA) Appendix A to 40 CFR, Part 423--126 Priority Pollutants. Available online: www.epa.gov (accessed on 1 November 2023).
- Delgado-Saborit, J.M.; Stark, C.; Harrison, R.M. Carcinogenic Potential, Levels and Sources of Polycyclic Aromatic Hydrocarbon Mixtures in Indoor and Outdoor Environments and Their Implications for Air Quality Standards. Environ Int 2011, 37, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Callén, M.S.; Iturmendi, A.; López, J.M. Source Apportionment of Atmospheric PM2.5-Bound Polycyclic Aromatic Hydrocarbons by a PMF Receptor Model. Assessment of Potential Risk for Human Health. Environmental Pollution 2014, 195, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.F.; Brown, J.P.; Dawson, S.V.; Marty, M.A. Risk Assessment for Benzo[a]Pyrene. Regulatory Toxicology and Pharmacology 1991, 13, 170–184. [Google Scholar] [CrossRef]
- Lemieux, C.L.; Long, A.S.; Lambert, I.B.; Lundstedt, S.; Tysklind, M.; White, P.A. Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbon Contaminated Soils Determined Using Bioassay-Derived Levels of Benzo[ a ]Pyrene Equivalents. Environ Sci Technol 2015, 49, 1797–1805. [Google Scholar] [CrossRef] [PubMed]
- Panne, U.; Neuhauser, R.E.; Theisen, M.; Fink, H.; Niessner, R. Analysis of Heavy Metal Aerosols on Filters by Laser-Induced Plasma Spectroscopy. Spectrochim Acta Part B At Spectrosc 2001, 56, 839–850. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC) Arsenic, Metals, Fibres, and Dusts. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans.; Lyon, France, 2012;
- Fenger, J. Air Pollution in the Last 50 Years – From Local to Global. Atmos Environ 2009, 43, 13–22. [Google Scholar] [CrossRef]
- Suvarapu, L.N.; Baek, S.-O. Determination of Heavy Metals in the Ambient Atmosphere. Toxicol Ind Health 2017, 33, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Farahani, V.J.; Altuwayjiri, A.; Pirhadi, M.; Verma, V.; Ruprecht, A.A.; Diapouli, E.; Eleftheriadis, K.; Sioutas, C. The Oxidative Potential of Particulate Matter (PM) in Different Regions around the World and Its Relation to Air Pollution Sources. Environmental Science: Atmospheres 2022, 2, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Hasheminassab, S.; Daher, N.; Ostro, B.D.; Sioutas, C. Long-Term Source Apportionment of Ambient Fine Particulate Matter (PM 2.5 ) in the Los Angeles Basin: A Focus on Emissions Reduction from Vehicular Sources. Environmental Pollution 2014, 193, 54–64. [Google Scholar] [CrossRef]
- Kim, E.; Turkiewicz, K.; Zulawnick, S.A.; Magliano, K.L. Sources of Fine Particles in the South Coast Area, California. Atmos Environ 2010, 44, 3095–3100. [Google Scholar] [CrossRef]
- Pirhadi, M.; Mousavi, A.; Taghvaee, S.; Shafer, M.M.; Sioutas, C. Semi-Volatile Components of PM2.5 in an Urban Environment: Volatility Profiles and Associated Oxidative Potential. Atmos Environ 2020, 223, 117197. [Google Scholar] [CrossRef] [PubMed]
- Saffari, A.; Daher, N.; Samara, C.; Voutsa, D.; Kouras, A.; Manoli, E.; Karagkiozidou, O.; Vlachokostas, C.; Moussiopoulos, N.; Shafer, M.M.; et al. Increased Biomass Burning Due to the Economic Crisis in Greece and Its Adverse Impact on Wintertime Air Quality in Thessaloniki. Environ Sci Technol 2013, 47, 13313–13320. [Google Scholar] [CrossRef] [PubMed]
- Manoli, E.; Kouras, A.; Karagkiozidou, O.; Argyropoulos, G.; Voutsa, D.; Samara, C. Polycyclic Aromatic Hydrocarbons (PAHs) at Traffic and Urban Background Sites of Northern Greece: Source Apportionment of Ambient PAH Levels and PAH-Induced Lung Cancer Risk. Environmental Science and Pollution Research 2016, 23, 3556–3568. [Google Scholar] [CrossRef] [PubMed]
- Argyropoulos, G.; Besis, A.; Voutsa, D.; Samara, C.; Sowlat, M.H.; Hasheminassab, S.; Sioutas, C. Source Apportionment of the Redox Activity of Urban Quasi-Ultrafine Particles (PM0.49) in Thessaloniki Following the Increased Biomass Burning Due to the Economic Crisis in Greece. Science of The Total Environment 2016, 568, 124–136. [Google Scholar] [CrossRef]
- Barregard, L.; Sällsten, G.; Gustafson, P.; Andersson, L.; Johansson, L.; Basu, S.; Stigendal, L. Experimental Exposure to Wood-Smoke Particles in Healthy Humans: Effects on Markers of Inflammation, Coagulation, and Lipid Peroxidation. Inhal Toxicol 2006, 18, 845–853. [Google Scholar] [CrossRef] [PubMed]
- McCracken, J.P.; Smith, K.R.; Díaz, A.; Mittleman, M.A.; Schwartz, J. Chimney Stove Intervention to Reduce Long-Term Wood Smoke Exposure Lowers Blood Pressure among Guatemalan Women. Environ Health Perspect 2007, 115, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Daher, N.; Ruprecht, A.; Invernizzi, G.; De Marco, C.; Miller-Schulze, J.; Heo, J.B.; Shafer, M.M.; Shelton, B.R.; Schauer, J.J.; Sioutas, C. Characterization, Sources and Redox Activity of Fine and Coarse Particulate Matter in Milan, Italy. Atmos Environ 2012, 49, 130–141. [Google Scholar] [CrossRef]
- Hakimzadeh, M.; Soleimanian, E.; Mousavi, A.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. The Impact of Biomass Burning on the Oxidative Potential of PM2.5 in the Metropolitan Area of Milan. Atmos Environ 2020, 224. [Google Scholar] [CrossRef]
- Gualtieri, M.; Øvrevik, J.; Mollerup, S.; Asare, N.; Longhin, E.; Dahlman, H.-J.; Camatini, M.; Holme, J.A. Airborne Urban Particles (Milan Winter-PM2.5) Cause Mitotic Arrest and Cell Death: Effects on DNA, Mitochondria, AhR Binding and Spindle Organization. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2011, 713, 18–31. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Regional Office for Europe Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Available online: https://apps.who.int/iris/handle/10665/107823 (accessed on 15 May 2023).
- Manoli, E.; Voutsa, D.; Samara, C. Chemical Characterization and Source Identification/Apportionment of Fine and Coarse Air Particles in Thessaloniki, Greece. Atmos Environ 2002, 36, 949–961. [Google Scholar] [CrossRef]
- Dimitriou, K.; Stavroulas, I.; Grivas, G.; Chatzidiakos, C.; Kosmopoulos, G.; Kazantzidis, A.; Kourtidis, K.; Karagioras, A.; Hatzianastassiou, N.; Pandis, S.Ν.; et al. Intra- and Inter-City Variability of PM2.5 Concentrations in Greece as Determined with a Low-Cost Sensor Network. Atmos Environ 2023, 301, 119713. [Google Scholar] [CrossRef]
- Marcazzan, G.M.; Vaccaro, S.; Valli, G.; Vecchi, R. Characterisation of PM10 and PM2.5 Particulate Matter in the Ambient Air of Milan (Italy). Atmos Environ 2001, 35, 4639–4650. [Google Scholar] [CrossRef]
- Phuleria, H.C. Air Quality Impacts of the October 2003 Southern California Wildfires. J Geophys Res 2005, 110, D07S20. [Google Scholar] [CrossRef]
- Putaud, J.-P.; Raes, F.; Van Dingenen, R.; Brüggemann, E.; Facchini, M.-C.; Decesari, S.; Fuzzi, S.; Gehrig, R.; Hüglin, C.; Laj, P.; et al. A European Aerosol Phenomenology—2: Chemical Characteristics of Particulate Matter at Kerbside, Urban, Rural and Background Sites in Europe. Atmos Environ 2004, 38, 2579–2595. [Google Scholar] [CrossRef]
- Altuwayjiri, A.; Soleimanian, E.; Moroni, S.; Palomba, P.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. The Impact of Stay-Home Policies during Coronavirus-19 Pandemic on the Chemical and Toxicological Characteristics of Ambient PM2.5 in the Metropolitan Area of Milan, Italy. Science of The Total Environment 2021, 758, 143582. [Google Scholar] [CrossRef] [PubMed]
- Moussiopoulos, Ν.; Vlachokostas, Ch.; Tsilingiridis, G.; Douros, I.; Hourdakis, E.; Naneris, C.; Sidiropoulos, C. Air Quality Status in Greater Thessaloniki Area and the Emission Reductions Needed for Attaining the EU Air Quality Legislation. Science of The Total Environment 2009, 407, 1268–1285. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, A.; Sowlat, M.H.; Lovett, C.; Rauber, M.; Szidat, S.; Boffi, R.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. Source Apportionment of Black Carbon (BC) from Fossil Fuel and Biomass Burning in Metropolitan Milan, Italy. Atmos Environ 2019, 203, 252–261. [Google Scholar] [CrossRef]
- Altuwayjiri, A.; Soleimanian, E.; Moroni, S.; Palomba, P.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. The Impact of Stay-Home Policies during Coronavirus-19 Pandemic on the Chemical and Toxicological Characteristics of Ambient PM2.5 in the Metropolitan Area of Milan, Italy. Science of The Total Environment 2021, 758, 143582. [Google Scholar] [CrossRef] [PubMed]
- Samara, C.; Kantiranis, N.; Kollias, P.; Planou, S.; Kouras, A.; Besis, A.; Manoli, E.; Voutsa, D. Spatial and Seasonal Variations of the Chemical, Mineralogical and Morphological Features of Quasi-Ultrafine Particles (PM0.49) at Urban Sites. Science of The Total Environment 2016, 553, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Samara, C.; Voutsa, D.; Kouras, A.; Eleftheriadis, K.; Maggos, T.; Saraga, D.; Petrakakis, M. Organic and Elemental Carbon Associated to PM10 and PM2.5 at Urban Sites of Northern Greece. Environmental Science and Pollution Research 2014, 21, 1769–1785. [Google Scholar] [CrossRef]
- Kassomenos, P.A.; Kelessis, A.; Paschalidou, A.K.; Petrakakis, M. Identification of Sources and Processes Affecting Particulate Pollution in Thessaloniki, Greece. Atmos Environ 2011, 45, 7293–7300. [Google Scholar] [CrossRef]
- Voutsa, D.; Samara, C.; Manoli, E.; Lazarou, D.; Tzoumaka, P. Ionic Composition of PM2.5 at Urban Sites of Northern Greece: Secondary Inorganic Aerosol Formation. Environmental Science and Pollution Research 2014, 21, 4995–5006. [Google Scholar] [CrossRef]
- Badami, M.M.; Tohidi, R.; Aldekheel, M.; Farahani, V.J.; Verma, V.; Sioutas, C. Design, Optimization, and Evaluation of a Wet Electrostatic Precipitator (ESP) for Aerosol Collection. Atmos Environ 2023, 308, 119858. [Google Scholar] [CrossRef]
- Sowlat, M.H.; Hasheminassab, S.; Sioutas, C. Source Apportionment of Ambient Particle Number Concentrations in Central Los Angeles Using Positive Matrix Factorization (PMF). Atmos Chem Phys 2016, 16, 4849–4866. [Google Scholar] [CrossRef]
- Mousavi, A.; Sowlat, M.H.; Hasheminassab, S.; Polidori, A.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Impact of Emissions from the Ports of Los Angeles and Long Beach on the Oxidative Potential of Ambient PM0.25 Measured across the Los Angeles County. Science of The Total Environment 2019, 651, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Aldekheel, M.; Altuwayjiri, A.; Tohidi, R.; Jalali Farahani, V.; Sioutas, C. The Role of Portable Air Purifiers and Effective Ventilation in Improving Indoor Air Quality in University Classrooms. Int J Environ Res Public Health 2022, 19, 14558. [Google Scholar] [CrossRef]
- Lough, G.C.; Schauer, J.J.; Park, J.-S.; Shafer, M.M.; DeMinter, J.T.; Weinstein, J.P. Emissions of Metals Associated with Motor Vehicle Roadways. Environ Sci Technol 2005, 39, 826–836. [Google Scholar] [CrossRef]
- Chrysikou, L.P.; Samara, C.A. Seasonal Variation of the Size Distribution of Urban Particulate Matter and Associated Organic Pollutants in the Ambient Air. Atmos Environ 2009, 43, 4557–4569. [Google Scholar] [CrossRef]
- H: EPA Risk Assessment Guidance for Superfund Volume I, 2009.
- Guo, Y.; Kannan, K. Comparative Assessment of Human Exposure to Phthalate Esters from House Dust in China and the United States. Environ Sci Technol 2011, 45, 3788–3794. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-J.; Bao, L.-J.; Huang, C.-L.; Li, S.-M.; Liu, P.; Zeng, E.Y. Assessment of Airborne Polycyclic Aromatic Hydrocarbons in a Megacity of South China: Spatiotemporal Variability, Indoor-Outdoor Interplay and Potential Human Health Risk. Environmental Pollution 2018, 238, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Vega, E.; López-Veneroni, D.; Ramírez, O.; Chow, J.C.; Watson, J.G. Particle-Bound PAHs and Chemical Composition, Sources and Health Risk of PM2.5 in a Highly Industrialized Area. Aerosol Air Qual Res 2021, 21, 210047. [Google Scholar] [CrossRef]
- Hoseini, M.; Yunesian, M.; Nabizadeh, R.; Yaghmaeian, K.; Ahmadkhaniha, R.; Rastkari, N.; Parmy, S.; Faridi, S.; Rafiee, A.; Naddafi, K. Characterization and Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Atmospheric Particulate of Tehran, Iran. Environmental Science and Pollution Research 2016, 23, 1820–1832. [Google Scholar] [CrossRef] [PubMed]
- Delistraty, D. Toxic Equivalency Factor Approach for Risk Assessment of Polycyclic Aromatic Hydrocarbons. Toxicol Environ Chem 1997, 64, 81–108. [Google Scholar] [CrossRef]
- 2015.
- Kearney, J.; Wallace, L.; MacNeill, M.; Héroux, M.-E.; Kindzierski, W.; Wheeler, A. Residential Infiltration of Fine and Ultrafine Particles in Edmonton. Atmos Environ 2014, 94, 793–805. [Google Scholar] [CrossRef]
- Rivas, I.; Viana, M.; Moreno, T.; Bouso, L.; Pandolfi, M.; Alvarez-Pedrerol, M.; Forns, J.; Alastuey, A.; Sunyer, J.; Querol, X. Outdoor Infiltration and Indoor Contribution of UFP and BC, OC, Secondary Inorganic Ions and Metals in PM2.5 in Schools. Atmos Environ 2015, 106, 129–138. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of Relationship between Indoor and Outdoor Particles: I/O Ratio, Infiltration Factor and Penetration Factor. Atmos Environ 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Allen, R.; Larson, T.; Sheppard, L.; Wallace, L.; Liu, L.-J.S. Use of Real-Time Light Scattering Data To Estimate the Contribution of Infiltrated and Indoor-Generated Particles to Indoor Air. Environ Sci Technol 2003, 37, 3484–3492. [Google Scholar] [CrossRef]
- Hassanvand, M.S.; Naddafi, K.; Faridi, S.; Nabizadeh, R.; Sowlat, M.H.; Momeniha, F.; Gholampour, A.; Arhami, M.; Kashani, H.; Zare, A.; et al. Characterization of PAHs and Metals in Indoor/Outdoor PM10/PM2.5/PM1 in a Retirement Home and a School Dormitory. Science of The Total Environment 2015, 527–528, 100–110. [Google Scholar] [CrossRef]
- IARC IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; 2012; Vol. 86.
- IARC Cobalt in Hard Metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide; 2006; Vol. 86;
- Ramírez, O.; Sánchez de la Campa, A.M.; Sánchez-Rodas, D.; de la Rosa, J.D. Hazardous Trace Elements in Thoracic Fraction of Airborne Particulate Matter: Assessment of Temporal Variations, Sources, and Health Risks in a Megacity. Science of The Total Environment 2020, 710, 136344. [Google Scholar] [CrossRef]
- Hao, Y.; Luo, B.; Simayi, M.; Zhang, W.; Jiang, Y.; He, J.; Xie, S. Spatiotemporal Patterns of PM2.5 Elemental Composition over China and Associated Health Risks. Environmental Pollution 2020, 265, 114910. [Google Scholar] [CrossRef]
- Fakhri, N.; Fadel, M.; Öztürk, F.; Keleş, M.; Iakovides, M.; Pikridas, M.; Abdallah, C.; Karam, C.; Sciare, J.; Hayes, P.L.; et al. Comprehensive Chemical Characterization of PM2.5 in the Large East Mediterranean-Middle East City of Beirut, Lebanon. Journal of Environmental Sciences, 2022. [Google Scholar] [CrossRef]
- Martellini, T.; Giannoni, M.; Lepri, L.; Katsoyiannis, A.; Cincinelli, A. One Year Intensive PM2.5 Bound Polycyclic Aromatic Hydrocarbons Monitoring in the Area of Tuscany, Italy. Concentrations, Source Understanding and Implications. Environmental Pollution 2012, 164, 252–258. [Google Scholar] [CrossRef]
- Callén, M.S.; López, J.M.; Mastral, A.M. Characterization of PM10-Bound Polycyclic Aromatic Hydrocarbons in the Ambient Air of Spanish Urban and Rural Areas. J. Environ. Monit. 2011, 13, 319–327. [Google Scholar] [CrossRef]
- Karageorgou, K.; Manoli, E.; Kouras, A.; Samara, C. Commuter Exposure to Particle-Bound Polycyclic Aromatic Hydrocarbons in Thessaloniki, Greece. Environmental Science and Pollution Research 2021, 28, 59119–59130. [Google Scholar] [CrossRef] [PubMed]
- Besis, A.; Romano, M.P.; Serafeim, E.; Avgenikou, A.; Kouras, A.; Lionetto, M.G.; Guascito, M.R.; De Bartolomeo, A.R.; Giordano, M.E.; Mangone, A.; et al. Size-Resolved Redox Activity and Cytotoxicity of Water-Soluble Urban Atmospheric Particulate Matter: Assessing Contributions from Chemical Components. Toxics 2023, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Thomaidis, N.S.; Bakeas, E.B.; Siskos, P.A. Characterization of Lead, Cadmium, Arsenic and Nickel in PM2.5 Particles in the Athens Atmosphere, Greece. Chemosphere 2003, 52, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Schwela, D.; Morawska, L.; Kotzias, D.; Jrc, E.C. 2002.
- Jose, J.; Srimuruganandam, B.; Nagendra, S.S. Characterization of PM10 and PM2.5 Emission Sources at Chennai, India. Nature Environment and Pollution Technology 2019, 18, 555–562. [Google Scholar]
- Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; et al. Source Origin of Trace Elements in PM from Regional Background, Urban and Industrial Sites of Spain. Atmos Environ 2007, 41, 7219–7231. [Google Scholar] [CrossRef]
- Singh, M.; Jaques, P.A.; Sioutas, C. Size Distribution and Diurnal Characteristics of Particle-Bound Metals in Source and Receptor Sites of the Los Angeles Basin. Atmos Environ 2002, 36, 1675–1689. [Google Scholar] [CrossRef]
- Hasheminassab, S.; Sowlat, M.H.; Pakbin, P.; Katzenstein, A.; Low, J.; Polidori, A. High Time-Resolution and Time-Integrated Measurements of Particulate Metals and Elements in an Environmental Justice Community within the Los Angeles Basin: Spatio-Temporal Trends and Source Apportionment. Atmos Environ X 2020, 7, 100089. [Google Scholar] [CrossRef]
- Contardo, T.; Vannini, A.; Sharma, K.; Giordani, P.; Loppi, S. Disentangling Sources of Trace Element Air Pollution in Complex Urban Areas by Lichen Biomonitoring. A Case Study in Milan (Italy). Chemosphere 2020, 256, 127155. [Google Scholar] [CrossRef] [PubMed]
- Diapouli, E.; Manousakas, M.; Vratolis, S.; Vasilatou, V.; Maggos, T.; Saraga, D.; Grigoratos, T.; Argyropoulos, G.; Voutsa, D.; Samara, C.; et al. Evolution of Air Pollution Source Contributions over One Decade, Derived by PM10 and PM2.5 Source Apportionment in Two Metropolitan Urban Areas in Greece. Atmos Environ 2017, 164, 416–430. [Google Scholar] [CrossRef]
- Saraga, D.E.; Tolis, E.I.; Maggos, T.; Vasilakos, C.; Bartzis, J.G. PM2.5 Source Apportionment for the Port City of Thessaloniki, Greece. Science of The Total Environment 2019, 650, 2337–2354. [Google Scholar] [CrossRef]
- Yu, C.H.; Huang, L.; Shin, J.Y.; Artigas, F.; Fan, Z. (Tina) Characterization of Concentration, Particle Size Distribution, and Contributing Factors to Ambient Hexavalent Chromium in an Area with Multiple Emission Sources. Atmos Environ 2014, 94, 701–708. [Google Scholar] [CrossRef]
- Kotaś, J.; Stasicka, Z. Chromium Occurrence in the Environment and Methods of Its Speciation. Environmental Pollution 2000, 107, 263–283. [Google Scholar] [CrossRef]
- Bourliva, A.; Kantiranis, N.; Papadopoulou, L.; Aidona, E.; Christophoridis, C.; Kollias, P.; Evgenakis, M.; Fytianos, K. Seasonal and Spatial Variations of Magnetic Susceptibility and Potentially Toxic Elements (PTEs) in Road Dusts of Thessaloniki City, Greece: A One-Year Monitoring Period. Science of The Total Environment 2018, 639, 417–427. [Google Scholar] [CrossRef]
- Singh, A.; Chandrasekharan Nair, K.; Kamal, R.; Bihari, V.; Gupta, M.K.; Mudiam, M.K.R.; Satyanarayana, G.N.V.; Raj, A.; Haq, I.; Shukla, N.K.; et al. Assessing Hazardous Risks of Indoor Airborne Polycyclic Aromatic Hydrocarbons in the Kitchen and Its Association with Lung Functions and Urinary PAH Metabolites in Kitchen Workers. Clinica Chimica Acta 2016, 452, 204–213. [Google Scholar] [CrossRef]
- Yang, H.-H.; Lee, W.-J.; Chen, S.-J.; Lai, S.-O. PAH Emission from Various Industrial Stacks. J Hazard Mater 1998, 60, 159–174. [Google Scholar] [CrossRef]
- Eriksson, A.C.; Nordin, E.Z.; Nyström, R.; Pettersson, E.; Swietlicki, E.; Bergvall, C.; Westerholm, R.; Boman, C.; Pagels, J.H. Particulate PAH Emissions from Residential Biomass Combustion: Time-Resolved Analysis with Aerosol Mass Spectrometry. Environ Sci Technol 2014, 48, 7143–7150. [Google Scholar] [CrossRef]
- Xu, L.; Yu, J.; Wan, G.; Sun, L. Emission Characteristics and Source Identification of Polycyclic Aromatic Hydrocarbons (PAHs) from Used Mineral Oil Combustion. Fuel 2021, 304, 121357. [Google Scholar] [CrossRef]
- Altuwayjiri, A.; Pirhadi, M.; Taghvaee, S.; Sioutas, C. Long-Term Trends in the Contribution of PM2.5 Sources to Organic Carbon (OC) in the Los Angeles Basin and the Effect of PM Emission Regulations. Faraday Discuss 2021, 226, 74–99. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.; Henderson, V. Effects of Air Quality Regulations on Polluting Industries. Journal of Political Economy 2000, 108, 379–421. [Google Scholar] [CrossRef]
- Lurmann, F.; Avol, E.; Gilliland, F. Emissions Reduction Policies and Recent Trends in Southern California’s Ambient Air Quality. J Air Waste Manage Assoc 2015, 65, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Farahani, V.J.; Soleimanian, E.; Pirhadi, M.; Sioutas, C. Long-Term Trends in Concentrations and Sources of PM2.5–Bound Metals and Elements in Central Los Angeles. Atmos Environ 2021, 253, 118361. [Google Scholar] [CrossRef]
- Turner, M.C.; Krewski, D.; Pope, C.A.; Chen, Y.; Gapstur, S.M.; Thun, M.J. Long-Term Ambient Fine Particulate Matter Air Pollution and Lung Cancer in a Large Cohort of Never-Smokers. Am J Respir Crit Care Med 2011, 184, 1374–1381. [Google Scholar] [CrossRef]
- Kam, W.; Delfino, R.J.; Schauer, J.J.; Sioutas, C. A Comparative Assessment of PM2.5 Exposures in Light-Rail, Subway, Freeway, and Surface Street Environments in Los Angeles and Estimated Lung Cancer Risk. Environ. Sci.: Processes Impacts 2013, 15, 234–243. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Yin, W.; Xu, T.; Hu, C.; Cheng, J.; Hou, J.; He, Z.; Yuan, J. Seasonal Exposure to PM2.5-Bound Polycyclic Aromatic Hydrocarbons and Estimated Lifetime Risk of Cancer: A Pilot Study. Science of The Total Environment 2020, 702, 135056. [Google Scholar] [CrossRef]
- Masiol, M.; Hofer, A.; Squizzato, S.; Piazza, R.; Rampazzo, G.; Pavoni, B. Carcinogenic and Mutagenic Risk Associated to Airborne Particle-Phase Polycyclic Aromatic Hydrocarbons: A Source Apportionment. Atmos Environ 2012, 60, 375–382. [Google Scholar] [CrossRef]
- US EPA Exposure Factors Handbook; 2011th ed.; U.S. Environmental Protection Agency: Washington D. 2011.
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In; 2012; pp. 133–164.
- Police, S.; Sahu, S.K.; Pandit, G.G. Chemical Characterization of Atmospheric Particulate Matter and Their Source Apportionment at an Emerging Industrial Coastal City, Visakhapatnam, India. Atmos Pollut Res 2016, 7, 725–733. [Google Scholar] [CrossRef]
- Rajeev, P.; Rajput, P.; Singh, D.K.; Singh, A.K.; Gupta, T. Risk Assessment of Submicron PM-Bound Hexavalent Chromium during Wintertime. Human and Ecological Risk Assessment: An International Journal 2018, 24, 1453–1463. [Google Scholar] [CrossRef]


| City | Particle size | Sampler | Flow rate | Number of samples | Filter type | Sampling period(s) |
Study |
|---|---|---|---|---|---|---|---|
| Los Angeles, USA | PM2.5 | Versatile Aerosol Concentration Enrichment System (VACES) | 300 L/min | 8 | Quartz | August 2018December 2018 – January 2019 | Pirhadi et al., 2020 [27] |
| Milan, Italy | PM2.5 | Personal cascade impactor sampler (PCIS) | 9 L/min | 14 | Quartz | December 2018 – February 2019May - July 2019 | Hakimzadeh et al., 2020 [34] |
| Thessaloniki, Greece | PM2.5 andPM0.49 | Low-volume impactor with 2.5µm cutpoint High-volume impactor with 0.49µm cutpoint |
38 L/min1100 L/min | 2610 | Quartz and TeflonQuartz | February – March 2012 January – February 2013 January – March 2013 May – June 2013 |
Saffari et al., 2013 [28] Argyropoulos et al., 2016 [30] |
| Metal | As | Cd | Cr(VI) | Ni | Pb |
|---|---|---|---|---|---|
| IUR value [56] (per ) | 0.0043 | 0.0018 | 0.012 | 0.00024 | 0.000012 |
| PAH species | Los Angeles (n = 8) | Thessaloniki (n = 36) | Milan (n = 14) |
|---|---|---|---|
| Phenanthrene | 0.04 ± 0.02 | 0.425 ± 0.33 | 0.307 ± 0.191 |
| Retene | BDL | BDL | 0.383 ± 0.291 |
| Anthracene | BDL | 0.165 ± 0.121 | BDL |
| Pyrene | 0.032 ± 0.012 | 0.794 ± 0.546 | 1.035 ± 0.638 |
| Chrysene | 0.023 ± 0.017 | 1.212 ± 0.932 | 5.228 ± 3.399 |
| Benz(a)anthracene | 0.014 ± 0.011 | 1.025 ± 0.847 | 1.458 ± 0.934 |
| Acephenanthrylene | BDL | 0.136 ± 0.051 | 0.096 ± 0.091 |
| Fluoranthene | 0.082 ± 0.031 | 0.774 ± 0.566 | 1.108 ± 0.689 |
| Benzo(ghi)fluoranthene | 0.012 ± 0.009 | BDL | 2.2 ± 1.401 |
| Benzo(b)fluoranthene | 0.071 ± 0.048 | 0.586 ± 0.394 | 5.613 ± 3.514 |
| Benzo(k)fluoranthene | 0.108 ± 0.042 | 0.951 ± 0.911 | 5.159 ± 3.279 |
| Benzo(e)pyrene | 0.081 ± 0.044 | 1.316 ± 0.957 | 3.896 ± 2.461 |
| Benzo(a)pyrene | 0.071 ± 0.047 | 1.128 ± 0.754 | 0.155 ± 0.13 |
| Benzo(g,h,i)perylene | 0.201 ± 0.099 | 1.476 ± 1.139 | 1.791 ± 1.086 |
| 1-Methylchrysene | BDL | BDL | 0.497 ± 0.318 |
| Perylene | BDL | BDL | BDL |
| Benzo(j)fluoranthene | BDL | BDL | 0.192 ± 0.132 |
| Dibenz(a,h)anthracene | BDL | 0.188 ± 0.141 | 0.37 ± 0.239 |
| Picene | BDL | BDL | 0.233 ± 0.146 |
| Cyclopenta(cd)pyrene | BDL | BDL | BDL |
| Indeno(1,2,3-cd)pyrene | 0.104 ± 0.044 | 1.128 ± 0.754 | 1.579 ± 0.958 |
| Dibenzo(a,e)pyrene | BDL | BDL | 0.033 ± 0.031 |
| Coronene | 0.045 ± 0.036 | BDL | 0.513 ± 0.32 |
| Study | Location | Total BaPeq (ng/m3) |
|---|---|---|
| Current study | Los Angeles, US | 0.1 ± 0.1 |
| Current study | Thessaloniki, Greece | 2.5 ± 1.78 |
| Current study | Milan, Italy | 3.5 ± 4.6 |
| Wang et al. (2020) [99] | Wuhan, China | 2.9 ± 1.4 |
| Masiol et al. (2012) [100] | Venice, Italy | 1.9 ± 2.6 |
| Martellini et al. (2012) [73] | Florence, Italy | 0.8 |
| Kam et al. (2013) [98] | I-110 freeway in Los Angeles, US | 12.7 ± 2.1 |
| Kam et al. (2013) [98] | I-710 freeway in Los Angeles, US | 23.3 ± 4.4 |
| Kam et al. (2013) [98] | Surface streets in Los Angeles, US | 8.6 ± 1.5 |
| Los Angeles | Thessaloniki | Milan | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Species | WS | BS | MS | WS | BS | MS | WS | BS | MS |
| As | 0.33±0.10 | 0.21±0.07 | 0.27±0.09 | 1.57±0.78 | 0.97±0.48 | 1.27±0.63 | 2.08±0.44 | 1.29±0.27 | 1.69±0.35 |
| Cd | 0.04±0.01 | 0.03±0.01 | 0.03±0.01 | 0.34±0.19 | 0.21±0.12 | 0.28±0.16 | 0.46±0.03 | 0.29±0.02 | 0.38±0.03 |
| Cr(VI) | 2.69±0.19 | 1.66±0.12 | 2.17±0.16 | 2.91±1.01 | 1.80±0.63 | 2.36±0.82 | 9.82±0.58 | 6.08±0.36 | 7.95±0.47 |
| Ni | 0.22±0.03 | 0.14±0.02 | 0.18±0.02 | 0.38±0.23 | 0.23±0.15 | 0.31±0.19 | 0.6±0.05 | 0.38±0.03 | 0.49±0.04 |
| Pb | 0.02±0.01 | 0.01±0.01 | 0.01±0.01 | 0.06±0.03 | 0.04±0.02 | 0.05±0.02 | 0.19±0.02 | 0.12±0.01 | 0.16±0.02 |
| BaPeq | 0.06±0.05 | 0.04±0.04 | 0.05±0.05 | 1.25±0.9 | 0.77±0.56 | 1.01±0.73 | 1.77±2.33 | 1.1±1.45 | 1.44±1.89 |
| Total | 3.36±0.39 | 2.07±0.27 | 2.71±0.34 | 6.51±3.14 | 4.02±1.96 | 5.28±2.55 | 14.92±3.45 | 9.26±2.14 | 12.11±2.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
