Submitted:
27 June 2023
Posted:
28 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection, Preparation, and Analysis
2.3. Pollution Assessment of Hazardous Elements
2.4. Health Risk Assessment of Hazardous Elements
2.4.1. Exposure Analysis
2.4.2. Non-Carcinogenic Risk Assessment
2.4.3. Carcinogenic Risk Assessment
3. Results and Discussion
3.1. Concentration of HEs in Surface Dust along the Urbanization Gradient
3.2. Spatial Distribution of Concentration of HEs in Surface Dust
3.3. Pollution Assessment of HEs in Surface Dust along the Urbanization Gradient
3.4. Non-Carcinogenic Risk of HEs in Surface Dust along the Urbanization Gradient
3.5. Carcinogenic risk of HEs in Surface Dust along the Urbanization Gradient
4. Conclusion
- The the average concentrations of Hg, Cr, Ni, and Pb elements in surface dust in all urbanization gradients and Cd in surface dust in core urban exceed the corresponding background values, with the highest enrichment of Hg element in surface dust in all urbanization gradients in the study area. The spatial distribution of As and Pb are similar to one another, with high concentrations were seen in the core urban and urban gradients. The high concentrations of Hg, Cd, and Ni accumulation were observed in the core urban gradient, while high concentrations of Cr were observed in the urban gradient.
- The average CF values of Hg, Cd, and Ni in surface dust decrease in the order of core urban > urban > suburban, while the average CF values of As, Cr and Pb in surface dust decrease in the order of urban > core urban > suburban. The average PLI values of HEs in surface dust in the core urban, urban, and suburban gradients in the study area are 1.35, 1.29, and 1.15, respectively, at the low pollution level. The PLI of HEs decreased in the order of: core urban > urban > suburban. Hg is the main pollution factor in surface dust in all urbanization gradients in the study area.
- The HI values of HEs in surface dust in the core urban, urban, and suburban gradients were 0.910, 0.956, and 0.839 for children, respectively, compared to 0.158, 0.166, and 0.146 for adults, respectively. Meanwhile, the TCR values of carcinogenic HEs in surface dust in the core urban, urban, and suburban gradients were 3.77×10−5, 3.94×10−5, and 3.59×10−5 for children, respectively, compared to 3.10×10−5, 3.24×10−5, and 2.95×10−5 for adults, respectively. The HI and TCR values of HEs for adults and children can be ranked as: urban > core urban > suburban. The potential non-carcinogenic and carcinogenic health risks of the investigated HEs, instigated primarily by oral ingestion of surface dust, are found to be within the acceptable range, and Cr is the main non-carcinogenic risk factor, whereas Cd is the main carcinogenic risk factor among the analyzed HEs in surface dust in all urbanization gradients.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.F.; Shi, L.P.; Guang, A.; Mu, Z.F.; Zhan, H.Y.; Wu, Y.Q. Contamination levels and human health risk assessment of toxic heavy metals in street dust in an industrial city in Northwest China. Environ Geochem Health. 2018, 40, 2007–2020. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, Y.Y.; Walker, T. R.; Wang, Y.G.; Luo, Q.; Wu, H.; Wang, X.X. Distribution characteristics, chemical speciation and human health risk assessment of metals in surface dust in Shenyang City, China. Appl Geochem. 2021, 131. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.J.; Mulligan, C. Seasonal source identification and source-specific health risk assessment of pollutants in road dust. Environ Sci Pollut Res. 2022, 29, 10063–10076. [Google Scholar] [CrossRef]
- Shahab, A.; Hui, Z.; Rad, S.; Xiao, H.; Siddique, J.; Huang, L. L.; Ullah, H.; Rashid, A.; Taha, M. R.; Zada, N. A comprehensive review on pollution status and associated health risk assessment of human exposure to selected heavy metals in road dust across different cities of the world. Environ Geochem Health. 2022, 45, 585–606. [Google Scholar] [CrossRef]
- Zhao, G.Y.; Zhang, R.L.; Han, Y.; Meng, J.N.; Qiao, Q.; Li, H.T. Pollution characteristics, spatial distribution, and source identification of heavy metals in road dust in a central eastern city in China: a comprehensive survey. Environ Monitor Assess. 2021, 193. [Google Scholar] [CrossRef]
- Yang, X.Y.; Eziz, M.; Hayrat, A.; Ma, X.F.; Yan, W.; Qian, K.X.; Li, J.X.; Liu, Y.; Wang, Y.F. Heavy metal pollution and risk assessment of surface dust in the arid NW China. Inter J Environ Res Public Health. 2022, 19, 13296–13296. [Google Scholar] [CrossRef]
- Ling, Y.; Guo, F. Z.; Han, X.P.; Pei, j.S.; Jia, F.L.; Yuan, F.L.; Hua, L.T. Surface dust heavy metals in the major cities, China. Environ Earth Sci. 2017, 76. [Google Scholar]
- Ayomi, J.; Prasanna, E.; Godwin, A.; Ayoko. ; Ashantha, G. Assessment of ecological and human health risks of metals in urban road dust based on geochemical fractionation and potential bioavailability. Sci Total Environ. 2018, 635, 1609–1619. [Google Scholar]
- Yang, M.; Teng, Y.; Ren, W.J.; Huang, Y.; Xu, D.F.; Fu, Z.C.; Ma, W.T.; Luo, Y.M. Pollution and health risk assessment of heavy metals in agricultural soil around Shimen Realgar Mine. Soils. 2016, 48, 1172–1178. (In Chinese) [Google Scholar]
- Zhao, H.T.; Li, X.Y. Risk assessment of metals in road-deposited sediment along an urban–rural gradient. Environ Pollut. 2013, 174, 297–304. [Google Scholar] [CrossRef]
- Haque, M.; Sultana, S.; Niloy, N.M.; Quraishi, S.B.; Tareq, S.M. Source apportionment, ecological, and human health risks of toxic metals in road dust of densely populated capital and connected major highway of Bangladesh. Environ Sci Pollut Res Inter. 2022, 29, 37218–37233. [Google Scholar] [CrossRef]
- Wang, H.Z.; Cai, L.M.; Wang, Q.S.; Hu, G.C.; Chen, L.G. A comprehensive exploration of risk assessment and source quantification of potentially toxic elements in road dust: a case study from a large Cu smelter in central China. Catena. 2021, 196. [Google Scholar] [CrossRef]
- Wahab, M.I.A.; Wan, M.A.A.; Razak, M.; Sahani, M.F.K. Characteristics and health effect of heavy metals on non-exhaust road dusts in Kuala Lumpur. Sci Total Environ. 2020, 703, 135535. [Google Scholar] [CrossRef]
- Faisal, M.; Wu, Z.; Wang, H.L.; Hussain, Z.; Azam, M.I. Human health risk assessment of heavy metals in the urban road dust of Zhengzhou Metropolis, China. Atmosphere. 2021, 12, 1213. [Google Scholar] [CrossRef]
- Wei, B.G.; Yang, L.S. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J. 2009, 94, 99–107. [Google Scholar] [CrossRef]
- Díaz, R.O.; Casanova, D.A.O.; Torres, R.A.G.; Ramos, L.D. Heavy metals concentration, pollution indexes, and health risk assessment of urban road dust in the historical center of Havana, Cuba. Environ Monitor Assess. 2023, 195, 349. [Google Scholar] [CrossRef]
- Luo, X.S.; Ding, J.; Xu, B.; Wang, Y.J.; Li, H.B.; Yu, S. Incorporating bio accessibility into human health risk assessments of heavy metals in urban park soils. Sci Total Environ. 2012, 424. [Google Scholar]
- Adila, H.; Mamattursun, E. Identification of the spatial distributions, pollution levels, sources, and health risk of heavy metals in surface dusts from Korla, NW China. Open Geosci. 2020, 12, 1338–1349. [Google Scholar]
- Celine, S.L.; Li, X.D.; Shi, W.Z.; Sharon, C.C.; Iain, T. Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Sci Total Environ. 2006, 356, 45–61. [Google Scholar]
- Lu, S.G.; Wang, H.Y.; Bai, S.Q. Heavy metal contents and magnetic susceptibility of soils along an urban-rural gradient in rapidly growing city of Eastern China. Environ Monitor Assess. 2009, 155, 91–101. [Google Scholar] [CrossRef]
- Li, J.G.; Pu, L.J.; Zhu, M.; Liao, Q.; Wang, H.Y.; Cai, F.F. Spatial pattern of heavy metal concentration in the soil of rapid urbanization area: A case of Ehu Town, Wuxi City, Eastern China. Environ Earth Sci. 2014, 71, 3355–3362. [Google Scholar] [CrossRef]
- Flavia, D.N.; Daniela, B.; Ludovica, S.; Fabrizio, M.; Roberto, B.; Anna, A. Distribution of heavy metals and polycyclic aromatic hydrocarbons in holm oak plant–soil system evaluated along urbanization gradients. Chemosphere. 2015, 134, 91–97. [Google Scholar]
- Li, Y.X.; Yu, Y.; Yang, Z.F.; Shen, Z.Y.; Wang, X.; Cai, Y.P. A comparison of metal distribution in surface dust and soil among super city, town, and rural area. Environ Sci Pollut Res Inter. 2016, 23, 7849–7860. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.F.P.; Rafael, L.; Jairo, L.S. Richness, coverage and concentration of trace elements in vascular epiphytes along an urbanization gradient. Sci Total Environ. 2017, 584, 48–54. [Google Scholar] [CrossRef]
- Streeter, M.T.; Schilling, K.E.; Demanett, Z. Soil health variations across an agricultural-urban gradient, Iowa, USA. Environ Earth Sci. 2019, 78, 691–700. [Google Scholar] [CrossRef]
- Nazupar, S.; Mamattursun, E.; Li, X.G.; Wang, Y.H. Spatial distribution, contamination levels, and health risks of trace elements in topsoil along an urbanization gradient in the city of Urumqi, China. Sustainability. 2022, 14, 12646. [Google Scholar]
- Hong, T. Z.; Xu, Y.L. Risk assessment of metals in road-deposited sediment along an urban–rural gradient. Environ Pollut. 2013, 174, 297–304. [Google Scholar]
- Wei, B.G.; Jiang, F.Q.; Li, X.M.; Mu, S.Y. Y. Heavy metal induced ecological risk in the city of Urumqi, NW China. Environ Monit Assess. 2010, 160, 33–45. [Google Scholar] [CrossRef] [PubMed]
- HJ/T 166–2004; CEPA (Chinese Environmental Protection Administration). (In Chinese). CEPA (Chinese Environmental Protection Administration); China Environmental Press: Beijing, China, 2004.
- Tomlinson, D. L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgolander Meeresuntersuchungen. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- EPA/630/R–98/002; Guidelines for the Health Risk Assessment of Chemical Mixtures. The U.S. Environmental Protection Agency: Washington, DC, USA, 1986.
- EPA/540/1–89/002; Risk Assessment Guidance for Superfund. Part A—Human Health Evaluation Manual. Office of Emergency and Remedial Response: Washington, DC, USA, 1989; 1.
- OSWER9355.4–24; Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Solid Waste and Emergency Response: Washington, DC, USA, 2001.
- USEPA M/12: 1-187; Supplemental guidance for developing soil screening levels for superfund sites. United States Environ. Prot. Agency, 2002.
- Xiao, Q.; Zong, Y.T.; Lu, S.G. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol Environ Safety. 2015, 120, 377–385. [Google Scholar]
- Han, X.F.; Lu, X.W.; Qing, G.L.T.; Wu, Y.F. Health risks and contamination levels of heavy metals in dusts from parks and squares of an industrial city in semi-arid area of China. Inter J Environ Res Pub Health. 2017, 14, 886. [Google Scholar] [CrossRef] [PubMed]
- Gulbanu, H.; Mamattursun, E.; Wang, W.W.; Anwar, I.; Li, X.G. Spatial distribution, contamination levels, sources, and potential health risk assessment of trace elements in street dusts of Urumqi city, NW China. Human Ecol Risk Assess. 2020, 26, 2112–2128. [Google Scholar]
- Cao, L.P.; Liu, R.M.; Zhou, Y.L.; Men, C.; Li, L. Source variation and tempo-spatial characteristics of health risks of heavy metals in surface dust in Beijing, China. Stoch Environ Res Risk Assess. 2021, 36, 1–13. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.M.; Xu, L.B.; Wang, Q.R.; Guo, L.J.; Miao, Y.X.; Shen, Z.Y. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing China. Hazard Mater. 2020, 388, 12. [Google Scholar] [CrossRef]
- Xing, H.X.; Xi, C.; Rui, M.L. Heavy metals in urban soils with various types of land use in Beijing, China. J Hazard Maters. 2011, 186, 2043–2050. [Google Scholar]
- Mamattursun, E.; Anwar, M.; Ajigul, M.; Gulbanu, H. A human health risk assessment of heavy metals in agricultural soils of Yanqi Basin, Silk Road Economic Belt, China. Human Ecol Risk Assess. 2018, 24, 1352–1366. [Google Scholar]
- IARC (International Agency for Research on Cancer). Agents Classified by the IARC Monographs: 1–109; IARC (International Agency for Research on Cancer): Lyon, France, 2014. [Google Scholar]


| Parameters | Meaning and Units | Children | Adult |
|---|---|---|---|
| IngR | Consumption rate of dusts (mg/d) | 200 | 100 |
| InhR | Dust inhalation rate (m3/d) | 7.5 | 16.2 |
| CF | Unit conversion factor (kg/mg) | 1×10−6 | 1×10−6 |
| EF | Exposure frequency (d/a) | 350 | 350 |
| ED | Exposure duration (year) | 6 | 30 |
| SA | Exposed skin area (cm2) | 899 | 1600 |
| AF | Skin adherence factor (mg/(cm2/d)) | 0.20 | 0.07 |
| PEF | Particulate emission factor (m3/kg) | 1.36×109 | 1.36×109 |
| BW | Average body weight (kg) | 21.2 | 62.4 |
| ATnc | Average exposure time for non-cancer (d) | 365×ED | 365×ED |
| ATca | Average exposure time for cancer (d) | 365×70 | 365×70 |
| ABS | Dermal absorption factor (unitless) | Hg=Cr=Ni=Pb=0.01; As=0.03; Cd=0.005 | |
| Elements | RfD/(mg/(kg·d) | SF/(mg/kg·d)−1 | ||||
|---|---|---|---|---|---|---|
| Ingestion | Inhalation | Dermal | Ingestion | Inhalation | Dermal | |
| Pb | 0.0035 | 0.00352 | 0.000525 | / | / | / |
| Ni | 0.020 | 0.0206 | 0.0054 | / | 0.84 | / |
| As | 0.0003 | 0.000123 | 0.0003 | 1.50 | 0.0043 | 1.50 |
| Cd | 0.001 | 0.001 | 0.00001 | / | 6.30 | / |
| Hg | 0.0003 | 0.0003 | 0.000024 | / | / | / |
| Cu | 0.04 | 0.0402 | 0.012 | / | / | / |
| Gradient | Statistics | As | Hg | Cd | Cr | Ni | Pb |
|---|---|---|---|---|---|---|---|
| Core urban (n=21) |
Minimum/(mg/kg) | 5.30 | 0.07 | 0.09 | 50.07 | 21.61 | 16.00 |
| Maximum/(mg/kg) | 14.20 | 0.55 | 0.50 | 81.08 | 74.94 | 56.30 | |
| Average/(mg/kg) | 9.14 | 0.18 | 0.24 | 63.83 | 36.95 | 36.61 | |
| St.D/(mg/kg) | 2.42 | 0.11 | 0.12 | 7.91 | 13.22 | 11.09 | |
| CV | 0.26 | 0.61 | 0.50 | 0.12 | 0.36 | 0.30 | |
| Urban (n=13) |
Minimum/(mg/kg) | 5.00 | 0.07 | 0.12 | 45.01 | 27.34 | 18.80 |
| Maximum/(mg/kg) | 15.90 | 0.29 | 0.36 | 94.38 | 47.43 | 146.00 | |
| Average/(mg/kg) | 9.96 | 0.14 | 0.21 | 65.52 | 32.99 | 40.28 | |
| St.D/(mg/kg) | 3.05 | 0.07 | 0.06 | 12.66 | 6.58 | 31.23 | |
| CV | 0.31 | 0.50 | 0.29 | 0.19 | 0.20 | 0.78 | |
| Suburban (n=7) |
Minimum/(mg/kg) | 8.00 | 0.07 | 0.09 | 48.01 | 18.20 | 19.20 |
| Maximum/(mg/kg) | 9.60 | 0.25 | 0.35 | 74.97 | 39.04 | 44.00 | |
| Average/(mg/kg) | 8.61 | 0.13 | 0.19 | 61.13 | 31.39 | 27.11 | |
| St.D/(mg/kg) | 0.48 | 0.06 | 0.09 | 9.10 | 6.73 | 7.59 | |
| CV | 0.06 | 0.46 | 0.47 | 0.15 | 0.21 | 0.28 | |
| Background value* | 9.99 | 0.076 | 0.23 | 53.20 | 29.90 | 14.10 | |
| Gradient | Statistics | CF | PLI | |||||
|---|---|---|---|---|---|---|---|---|
| As | Hg | Cd | Cr | Ni | Pb | |||
| Core urban (n=21) |
Minimum | 0.53 | 0.95 | 0.41 | 0.94 | 0.72 | 1.13 | 0.94 |
| Maximum | 1.42 | 7.24 | 2.17 | 1.52 | 2.51 | 3.99 | 1.97 | |
| Average | 0.91 | 2.34 | 1.02 | 1.20 | 1.24 | 2.60 | 1.35 | |
| Urban (n=13) |
Minimum | 0.50 | 0.93 | 0.52 | 0.85 | 0.91 | 1.33 | 1.04 |
| Maximum | 1.59 | 3.82 | 1.57 | 1.77 | 1.59 | 10.35 | 1.61 | |
| Average | 1.00 | 1.89 | 0.90 | 1.23 | 1.10 | 2.86 | 1.29 | |
| Suburban (n=7) |
Minimum | 0.80 | 0.97 | 0.37 | 0.90 | 0.61 | 1.36 | 0.87 |
| Maximum | 0.96 | 3.29 | 1.52 | 1.41 | 1.31 | 3.12 | 1.56 | |
| Average | 0.86 | 1.73 | 0.80 | 1.15 | 1.05 | 1.92 | 1.15 | |
| Gradient | Metals | HQingest | HQinhale | HQdermal | HQ | HI | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Children | Adults | Children | Adults | Children | Adults | Children | Adults | Children | Adults | ||
| Core urban | As | 2.91×10−1 | 4.68×10−2 | 1.96×10−5 | 1.36×10−5 | 2.62×10−3 | 5.24×10−4 | 2.94×10−1 | 4.73×10−2 | 0.910 | 0.158 |
| Hg | 5.66×10−3 | 9.10×10−4 | 1.56×10−7 | 1.08×10−7 | 6.36×10−4 | 1.27×10−4 | 6.29×10−3 | 1.04×10−3 | |||
| Cd | 2.25×10−3 | 3.62×10−4 | 6.20×10−8 | 4.31×10−8 | 6.06×10−3 | 1.22×10−3 | 8.31×10−3 | 1.58×10−3 | |||
| Cr | 2.03×10−1 | 3.27×10−2 | 5.88×10−4 | 4.09×10−4 | 2.74×10−1 | 5.49×10−2 | 4.78×10−1 | 8.80×10−2 | |||
| Ni | 1.76×10−2 | 2.84×10−3 | 4.72×10−7 | 3.28×10−7 | 5.88×10−4 | 1.18×10−4 | 1.82×10−2 | 2.96×10−3 | |||
| Pb | 9.99×10−2 | 1.61×10−2 | 2.74×10−6 | 1.90×10−6 | 5.99×10−3 | 1.20×10−3 | 1.06×10−1 | 1.73×10−2 | |||
| Urban | As | 3.17×10−1 | 5.10×10−2 | 2.13×10−5 | 1.48×10−5 | 2.85×10−3 | 5.71×10−4 | 3.20×10−1 | 5.16×10−2 | 0.956 | 0.166 |
| Hg | 4.58×10−3 | 7.37×10−4 | 1.26×10−7 | 8.78×10−8 | 5.15×10−4 | 1.03×10−4 | 5.09×10−3 | 8.40×10−4 | |||
| Cd | 1.98×10−3 | 3.19×10−4 | 5.47×10−8 | 3.80×10−8 | 5.35×10−3 | 1.07×10−3 | 7.33×10−3 | 1.39×10−3 | |||
| Cr | 2.09×10−1 | 3.36×10−2 | 6.03×10−4 | 4.19×10−4 | 2.81×10−1 | 5.64×10−2 | 4.90×10−1 | 9.04×10−2 | |||
| Ni | 1.58×10−2 | 2.53×10−3 | 4.22×10−7 | 2.93×10−7 | 5.25×10−4 | 1.05×10−4 | 1.63×10−2 | 2.64×10−3 | |||
| Pb | 1.10×10−1 | 1.77×10−2 | 3.01×10−6 | 2.09×10−6 | 6.59×10−3 | 1.32×10−3 | 1.17×10−1 | 1.90×10−2 | |||
| Suburban | As | 2.74×10−1 | 4.41×10−2 | 1.84×10−5 | 1.28×10−5 | 2.47×10−3 | 4.94×10−4 | 2.77×10−1 | 4.46×10−2 | 0.839 | 0.146 |
| Hg | 4.18×10−3 | 6.72×10−4 | 1.15×10−8 | 8.00×10−8 | 4.69×10−4 | 9.40×10−5 | 4.64×10−3 | 7.66×10−4 | |||
| Cd | 1.77×10−3 | 2.84×10−4 | 4.87×10−8 | 3.39×10−8 | 4.77×10−3 | 9.55×10−4 | 6.53×10−3 | 1.24×10−3 | |||
| Cr | 1.95×10−1 | 3.13×10−2 | 5.63×10−4 | 3.91×10−4 | 2.62×10−1 | 5.26×10−2 | 4.58×10−1 | 8.43×10−2 | |||
| Ni | 1.50×10−2 | 2.41×10−3 | 4.01×10−7 | 2.79×10−7 | 4.99×10−4 | 1.00×10−4 | 1.55×10−2 | 2.51×10−3 | |||
| Pb | 7.40×10−2 | 1.19×10−2 | 2.03×10−6 | 1.41×10−6 | 4.43×10−3 | 8.89×10−4 | 7.84×10−2 | 1.28×10−2 | |||
| Gradient | Metals | CRingest | CRinhale | CRdermal | CR | TCR | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Children | Adults | Children | Adults | Children | Adults | Children | Adults | Children | Adults | ||
| Core urban |
As | 1.12×10−5 | 9.03×10−6 | 8.87×10−13 | 3.08×10−12 | 3.03×10−7 | 7.08×10−7 | 1.15×10−5 | 9.74×10−6 | 3.77×10−5 | 3.10×10−5 |
| Cd | / | / | 3.35×10−11 | 1.16×10−10 | / | / | 2.62×10−5 | 2.12×10−5 | |||
| Cr | 2.61×10−5 | 2.10×10−5 | 6.05×10−8 | 2.10×10−7 | / | / | 3.35×10−11 | 1.16×10−10 | |||
| Ni | / | / | 7.01×10−10 | 2.43×10−9 | / | / | 7.01×10−10 | 2.43×10−9 | |||
| Urban | As | 1.22×10−5 | 9.84×10−6 | 9.67×10−13 | 3.36×10−12 | 3.30×10−7 | 7.72×10−7 | 1.26×10−5 | 1.06×10−5 | 3.94×10−5 | 3.24×10−5 |
| Cd | / | / | 2.95×10−11 | 1.03×10−10 | / | / | 2.69×10−5 | 2.18×10−5 | |||
| Cr | 2.68×10−5 | 2.16×10−5 | 6.21×10−8 | 2.16×10−7 | / | / | 2.95×10−11 | 1.03×10−10 | |||
| Ni | / | / | 6.26×10−10 | 2.17×10−9 | / | / | 6.26×10−10 | 2.17×10−9 | |||
| Suburban | As | 1.06×10−5 | 8.51×10−6 | 8.36×10−13 | 2.91×10−12 | 2.85×10−7 | 6.67×10−7 | 1.09×10−5 | 9.18×10−6 | 3.59×10−5 | 2.95×10−5 |
| Cd | / | / | 2.63×10−11 | 9.14×10−11 | / | / | 2.51×10−5 | 2.03×10−5 | |||
| Cr | 2.50×10−5 | 2.01×10−5 | 5.80×10−8 | 2.01×10−7 | / | / | 2.63×10−11 | 9.14×10−11 | |||
| Ni | / | / | 5.95×10−10 | 2.07×10−9 | / | / | 5.95×10−10 | 2.07×10−9 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
