Submitted:
12 July 2023
Posted:
13 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Genomics of Cryptosporidium spp.
2.1. Exploring Cryptosporidium Diversity and Evolutionary History through Whole Genome Sequencing
2.2. Unraveling Cryptosporidium’s Secrets through Comparative Genomics
2.3. Overcoming Challenges in Isolating Cryptosporidium DNA from Clinical Samples
3. Proteome
Author Contributions
Funding
References
- Kváč, M.; McEvoy, J.; Stenger, B.; Clark, M. Cryptosporidiosis in other vertebrates. Cryptosporidium: parasite and disease 2014, 237–323. [Google Scholar]
- Pumipuntu, N.; Piratae, S. Cryptosporidiosis: A zoonotic disease concern. Veterinary world 2018, 11, 681. [Google Scholar] [CrossRef]
- Kotková, M.; Nemejc, K.; Hanzal, B.S.V.; McEvoy, J.; Kvác, M. Cryptosporidium ubiquitum, C. muris and Cryptosporidium deer genotype in wild cervids and caprines in the Czech Republic. Folia Parasitologica 2016, 63, 1. [Google Scholar] [CrossRef]
- Jirku, M.; Valigurová, A.; Koudela, B.; Krízek, J.; Modrý, D.; Slapeta, J. New species of Cryptosporidium Tyzzer, 1907 (Apicomplexa) from amphibian host: morphology, biology and phylogeny. Folia parasitologica 2008, 55, 81. [Google Scholar] [CrossRef]
- Wang, T.; Wei, Z.; Zhang, Y.; Zhang, Q.; Zhang, L.; Yu, F.; Qi, M.; Zhao, W. Cryptosporidium in asymptomatic children in Southern Xinjiang, China and the potential of zoonotic transmission. 2021. [Google Scholar]
- Checkley, W.; White, A.C.; Jaganath, D.; Arrowood, M.J.; Chalmers, R.M.; Chen, X.-M.; Fayer, R.; Griffiths, J.K.; Guerrant, R.L.; Hedstrom, L. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. The Lancet Infectious Diseases 2015, 15, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Mead, J.R.; Arrowood, M.J. Treatment of cryptosporidiosis. In Cryptosporidium: parasite and disease; Springer, 2013; pp. 455–486. [Google Scholar]
- Liu, C.; Vigdorovich, V.; Kapur, V.; Abrahamsen, M.S. A random survey of the Cryptosporidium parvum genome. Infection and immunity 1999, 67, 3960–3969. [Google Scholar] [CrossRef] [PubMed]
- Strong, W.B.; Gut, J.; Nelson, R.G. Cloning and sequence analysis of a highly polymorphic Cryptosporidium parvum gene encoding a 60-kilodalton glycoprotein and characterization of its 15-and 45-kilodalton zoite surface antigen products. Infection and immunity 2000, 68, 4117–4134. [Google Scholar] [CrossRef]
- Abrahamsen, M.S.; Templeton, T.J.; Enomoto, S.; Abrahante, J.E.; Zhu, G.; Lancto, C.A.; Deng, M.; Liu, C.; Widmer, G.; Tzipori, S. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 2004, 304, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Widmer, G.; Wang, Y.; Ozaki, L.S.; Alves, J.M.; Serrano, M.G.; Puiu, D.; Manque, P.; Akiyoshi, D.; Mackey, A.J. The genome of Cryptosporidium hominis. Nature 2004, 431, 1107–1112. [Google Scholar] [CrossRef]
- Widmer, G.; Sullivan, S. Genomics and population biology of Cryptosporidium species. Parasite immunology 2012, 34, 61–71. [Google Scholar] [CrossRef]
- Ifeonu, O.O.; Chibucos, M.C.; Orvis, J.; Su, Q.; Elwin, K.; Guo, F.; Zhang, H.; Xiao, L.; Sun, M.; Chalmers, R.M. Annotated draft genome sequences of three species of Cryptosporidium: Cryptosporidium meleagridis isolate UKMEL1, C. baileyi isolate TAMU-09Q1 and C. hominis isolates TU502_2012 and UKH1. FEMS Pathogens and Disease 2016, 74, ftw080. [Google Scholar] [CrossRef] [PubMed]
- Troell, K.; Hallström, B.; Divne, A.-M.; Alsmark, C.; Arrighi, R.; Huss, M.; Beser, J.; Bertilsson, S. Cryptosporidium as a testbed for single cell genome characterization of unicellular eukaryotes. BMC genomics 2016, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, C.A.; Cotton, J.A.; Burkey, C.; Arju, T.; Gilmartin, A.; Lin, Y.; Ahmed, E.; Steiner, K.; Alam, M.; Ahmed, S. Genetic diversity of Cryptosporidium hominis in a Bangladeshi community as revealed by whole-genome sequencing. The Journal of infectious diseases 2018, 218, 259–264. [Google Scholar] [CrossRef]
- Nash, J.H.; Robertson, J.; Elwin, K.; Chalmers, R.A.; Kropinski, A.M.; Guy, R.A. Draft genome assembly of a potentially zoonotic Cryptosporidium parvum isolate, UKP1. Microbiology Resource Announcements 2018, 7, e01291–01218. [Google Scholar] [CrossRef] [PubMed]
- Widmer, G.; Lee, Y.; Hunt, P.; Martinelli, A.; Tolkoff, M.; Bodi, K. Comparative genome analysis of two Cryptosporidium parvum isolates with different host range. Infection, Genetics and Evolution 2012, 12, 1213–1221. [Google Scholar] [CrossRef]
- Guo, Y.; Cebelinski, E.; Matusevich, C.; Alderisio, K.A.; Lebbad, M.; McEvoy, J.; Roellig, D.M.; Yang, C.; Feng, Y.; Xiao, L. Subtyping novel zoonotic pathogen Cryptosporidium chipmunk genotype I. Journal of clinical microbiology 2015, 53, 1648–1654. [Google Scholar] [CrossRef]
- Guo, Y.; Tang, K.; Rowe, L.A.; Li, N.; Roellig, D.M.; Knipe, K.; Frace, M.; Yang, C.; Feng, Y.; Xiao, L. Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum. BMC genomics 2015, 16, 320. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Li, N.; Roellig, D.M.; Kelley, A.; Liu, G.; Amer, S.; Tang, K.; Zhang, L.; Xiao, L. Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum. International Journal for Parasitology 2017, 47, 281–290. [Google Scholar] [CrossRef]
- Arias-Agudelo, L.M.; Garcia-Montoya, G.; Cabarcas, F.; Galvan-Diaz, A.L.; Alzate, J.F. Comparative genomic analysis of the principal Cryptosporidium species that infect humans. PeerJ 2020, 8, e10478. [Google Scholar] [CrossRef]
- Xu, Z.; Li, N.; Guo, Y.; Feng, Y.; Xiao, L. Comparative genomic analysis of three intestinal species reveals reductions in secreted pathogenesis determinants in bovine-specific and non-pathogenic Cryptosporidium species. Microbial Genomics 2020, 6. [Google Scholar] [CrossRef]
- Guo, Y.; Li, N.; Lysén, C.; Frace, M.; Tang, K.; Sammons, S.; Roellig, D.M.; Feng, Y.; Xiao, L. Isolation and enrichment of Cryptosporidium DNA and verification of DNA purity for whole-genome sequencing. Journal of clinical microbiology 2015, 53, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Andersson, S.; Sikora, P.; Karlberg, M.L.; Winiecka-Krusnell, J.; Alm, E.; Beser, J.; Arrighi, R.B. It’s a dirty job—a robust method for the purification and de novo genome assembly of Cryptosporidium from clinical material. Journal of microbiological methods 2015, 113, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Hadfield, S.J.; Pachebat, J.A.; Swain, M.T.; Robinson, G.; Cameron, S.J.; Alexander, J.; Hegarty, M.J.; Elwin, K.; Chalmers, R.M. Generation of whole genome sequences of new Cryptosporidium hominis and Cryptosporidium parvum isolates directly from stool samples. BMC genomics 2015, 16, 1–12. [Google Scholar] [CrossRef]
- Magnuson, M.L.; Owens, J.H.; Kelty, C.A. Characterization of Cryptosporidium parvum by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Applied and environmental microbiology 2000, 66, 4720–4724. [Google Scholar] [CrossRef] [PubMed]
- Glassmeyer, S.T.; Ware, M.W.; SCHAEFER III, F.W.; Shoemaker, J.A.; Kryak, D.D. An improved method for the analysis of Cryptosporidium parvum oocysts by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Journal of Eukaryotic Microbiology 2007, 54, 479–481. [Google Scholar] [CrossRef]
- Snelling, W.J.; Lin, Q.; Moore, J.E.; Millar, B.C.; Tosini, F.; Pozio, E.; Dooley, J.S.; Lowery, C.J. Proteomics Analysis and Protein Expression during Sporozoite Excystation of Cryptosporidium parvum (Coccidia, Apicomplexa)* S. Molecular & cellular proteomics 2007, 6, 346–355. [Google Scholar]
- Sanderson, S.J.; Xia, D.; Prieto, H.; Yates, J.; Heiges, M.; Kissinger, J.C.; Bromley, E.; Lal, K.; Sinden, R.E.; Tomley, F. Determining the protein repertoire of Cryptosporidium parvum sporozoites. Proteomics 2008, 8, 1398–1414. [Google Scholar] [CrossRef]
- Siddiki, A.Z. Sporozoite proteome analysis of Cryptosporidium parvum by one-dimensional SDS-PAGE and liquid chromatography tandem mass spectrometry. Journal of Veterinary Science 2013, 14, 107–114. [Google Scholar] [CrossRef]
- Chatterjee, A.; Banerjee, S.; Steffen, M.; O’Connor, R.M.; Ward, H.D.; Robbins, P.W.; Samuelson, J. Evidence for mucin-like glycoproteins that tether sporozoites of Cryptosporidium parvum to the inner surface of the oocyst wall. Eukaryotic cell 2010, 9, 84–96. [Google Scholar] [CrossRef]
- Huang, Y.; Rongsheng, M.; Wei, C.; Peng, Z.; Kai, S.; Xiaojiao, Y.; Xiaojuan, W.; Xiangpei, W.; Zhaoguo, C. Isolation and Proteomic Analysis of Rhoptry-Enriched Fractions from Cryptosporidium parvum. Iranian Journal of Public Health 2015, 44, 1187. [Google Scholar]
- Li, D.; Cui, Z.; Wang, L.; Zhang, K.; Cao, L.; Zheng, S.; Zhang, L. TMT-based Proteomic Analysis and Protein Expression During Excystation of Cryptosporidium Anderson. 2021. [Google Scholar]
- Gathercole, R.; Tranfield, E.; Xia, D.; Perez-Cordon, G.; Robinson, G.; Timofte, D.; Zendri, F.; Chalmers, R.M. Analysis of Cryptosporidium spp. from clinical samples by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Journal of applied microbiology 2021, 131, 1840–1847. [Google Scholar] [CrossRef] [PubMed]
- Kaçar, Y.; Baykal, A.T.; Aydin, L.; Batmaz, H. Evaluation of the efficacy of cow colostrum in the treatment and its effect on serum proteomes in calves with cryptosporidiosis. Veterinary Immunology and Immunopathology 2022, 248, 110429. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, H.; Jiang, N.; Wang, Y.; Wang, Y.; Zhang, J.; Shen, Y.; Cao, J. Comparative proteomics reveals Cryptosporidium parvum manipulation of the host cell molecular expression and immune response. PLoS Neglected Tropical Diseases 2021, 15, e0009949. [Google Scholar] [CrossRef]
- Karpe, A.V.; Hutton, M.L.; Mileto, S.J.; James, M.L.; Evans, C.; Shah, R.M.; Ghodke, A.B.; Hillyer, K.E.; Metcalfe, S.S.; Liu, J.-W. Cryptosporidiosis modulates the gut microbiome and metabolism in a murine infection model. Metabolites 2021, 11, 380. [Google Scholar] [CrossRef] [PubMed]
| Species | Genomes ID | Platform | Genome size (Mbp) |
# of Contigs | # of Reads | Contig N50 (bp) | Average Coverage |
|---|---|---|---|---|---|---|---|
| C. hominis | TU502 237895 | Sanger Dideoxy Sequencing |
8.70 | 1,422 | - | 48,000 | 12 |
| TU502 2012 | Illumina MiSeq | 9.10 | 119 | 1,810,060 | 238,509 | 96 | |
| 30976 | Ilumina Genome Analyzer IIx 100bp paired end | 9.05 | 53 | 35,360,353 | 470,636 | 511 | |
| 37999 | Ilumina Genome Analyzer IIx 100bp paired end |
9.05 | 78 | 16,569,87 | 406,678 | 367.4 | |
| 33537 | 454 GS-FLX Titanium | 9.60 | 1,464 | 1,157,140 | 27,749 | 31 | |
| 30974 | 454 GS-FLX Titanium | 8.84 | 443 | 1,048,412 | 78,110 | 43 | |
| SWEH2 | Ion Torrent | 8.81 | 1629 | 1,791,829 | 9,465 | 35.2 | |
| SWEH5 | Ion Torrent | 8.82 | 1342 | 2,058,197 | 14,514 | 42.4 | |
| UdeA01 | Illumina MiSeq | 9.04 | 8 | 1,080,44 | 1,103,974 | 53.4 | |
| UKH1 | Illumina MiSeq | 9.14 | 156 | 3,798,205 | 179,408 | 197.3 | |
| UKH3 | Illumina MiSeq | 9.07 | 179 | 1,238,762 | 167,737 | 35.8 | |
| UKH4 | Illumina HiSeq | 9.39 | 2164 | 11,895,367 | 48,766 | 321.5 | |
| UKH5 | Illumina HiSeq | 9.06 | 526 | 12,649,912 | 81,885 | 362.2 | |
| C. parvum | Iowa II 5807 | Sanger Dideoxy Sequencing | 9.10 | 18 | - | 1,014,526 | 13 |
| UKP1 | Illumina HiSeq | 8.88 | 14 | 26,000,000 | 1,092,230 | 600 | |
| 31727 | Illumina Genome Analyzer IIx 100 bp paired-end | 9.08 | 337 | 13,074,496 | 76,396 | 116.0 | |
| 34902 | Illumina Genome Analyzer IIx 100 bp paired-end | 9.11 | 1,076 | 18,907,631 | 21,594 | 168.7 | |
| 35090 | Illumina Genome Analyzer IIx 100 bp paired-end | 9.04 | 3,256 | 14,188,762 | 4,248 | 3.256 | |
| C. baileyi | TAMU-09Q1 | gDNA Illumina library fragment size (bp) 654 | 8.43 | 145 | 6,240,960 | 203,018 | 70.06 |
| C. muris | 5808 | 4.5x Sanger and 10x 454 | 9.25 | 97 | 520,347 | 10 | |
|
C. chipmunk genotype I |
1280935 | Illumina Genome Analyzer IIx 100 bp paired-end | 9.05 | 50 | 9,509,783 | 117,886 | 200 |
| C. bovis | 310047 | Illumina HiSeq 250 bp paired-end | 9.11 | 59 | 7,080,000 | 444,382 | 196 |
| C. ryanae | 515981 | Illumina HiSeq 250 bp paired-end | 9.06 | 100 | 5,130,000 | 231,122 | 142.5 |
| C. meleagridis | UKMEL1 | Illumina MiSeq | 8.9 | 57 | 11,431,022 | 322,908 | 110.4 |
| Year | The greatest milestone | Genomic approach | Outcome of study | Reference |
|---|---|---|---|---|
| 1999 | Initial genomic exploration into C. parvum Iowa strain | Random sequence analysis |
|
[8] |
| 2000 | First cDNA sequence survey of C. parvum Iowa oocysts/sporozoites | Random sequence analysis with GSS approach to gene discovery |
|
[9] |
| 2004 | Complete genome sequencing of C. parvum Iowa type II strain | Whole-genome with shotgun Sanger sequencing |
|
[10] |
| 2004 | Complete genome sequencing C. hominis TU502 | Whole-genome with shotgun Sanger sequencing |
|
[11] |
| 2012 | Comparative genome analysis of two C. parvum isolates (TU114 and C. parvum IOWA) | Whole-genome sequencing |
|
[17] |
| 2015 | Sequencing of genomes C. chipmunk genotype I | Whole genome sequencing |
|
[18] |
| 2015 | Comparative genome analysis of C. hominis and C. parvum |
Whole genome sequencing |
|
[19] |
| 2016 | Sequencing of genomes: C. meleagridis UKMEL1, C. baileyi TAMU-09Q1 and C. hominis TU502_2012 and UKH1 |
Draft genome sequencing |
|
[13] |
| 2016 | Genome sequencing of Cryptosporidium spp. in clinical samples | Single cell sequencing |
|
[14] |
| 2017 | Sequencing of the genomes of two specimens of C. parvum form China and Egypt | Whole genome sequencing |
|
[20] |
| 2018 | Analysis of genetic diversity of C. hominis infections in slum-dwelling infants in Bangladesh |
Long-read resequencing |
|
[15] |
| 2018 | Analysis of a zoonotic isolate of C. parvum UKP1 isolated from a person with cryptosporidiosis |
Draft genome sequencing |
|
[16] |
| 2020 | Comparative analysis of Cryptosporidium species that infect humans | Whole-genome sequencing |
|
[21] |
| 2020 | Sequencing of the genomes of C. bovis and C. ryanae |
Whole-genome sequencing |
|
[22] |
| Year | The greatest milestone | Outcome of Study | Reference |
|---|---|---|---|
| 2000 | Initial proteomic study of whole and freeze-thawed C. parvum oocysts and freeze-thawed C. muris |
|
[26] |
| 2007 | Proteomic analysis of C. parvum oocysts |
|
[27] |
| 2007 | Large scale global proteomic analysis of nonexcyted and excyted C. parvum sporozoites |
|
[28] |
| 2008 | In depth analysis of the expressed protein repertoire of C. parvum |
|
[29] |
| 2010 | Proteome analysis for identifying the key components of the C. parvum oocyst wall |
|
[30] |
| 2013 | Proteome analysis of C. parvum sporozoites |
|
[31] |
| 2015 | Proteomic analysis of rhoptry-enriched fractions from C. parvum |
|
[32] |
| 2021 | Proteomic analysis of C. andersoni oocysts before and after excystation |
|
[33] |
| 2021 | Proteomic analysis of Cryptosporidium spp. from clinical samples |
|
[34] |
| 2021 | Assessing the effectiveness of cow colostrum for treating cryptosporidiosis in calves and its impact on serum proteomes |
|
[35] |
| 2021 | Characterize the changes to the proteome induced by C. parvum infection |
|
[36] |
| 2021 | Investigation the underlying biochemical interaction in C57BL/6J mice infected with C. parvum |
|
[37] |
| Specimens | Strain | Technique | Search Engines | Reference genome | Protein coding genes in reference genome |
|---|---|---|---|---|---|
| C. parvum and C.muris oocysts | Iowa and RN66 |
MALDI-TOF peptide mass fingerprinting (PMF) | - | - | - |
|
C. parvum sporozoites |
Iowa | MALDI-TOF MS | - | - | - |
| C. parvum sporozoites non-excysted and excysted | ISSC162 | combination of LC-MS/MS and iTRAQ isobaric labelling | ProQUANT software 1.1 (Applied Biosystems) | C. parvum Iowa type II | 3941 |
| C. parvum excysted oocyst/sporozoite | Iowa | three independent platforms: 1-DE LC-MS/MS, 2-DE LC-MS/MS and MudPIT | MASCOT search tool, SEQUEST algorithm version 27 | C. parvum Iowa type II | 3941 |
|
C. parvum sporozoites |
Iowa | SDS-PAGE and LC-MS/MS | MASCOT search tool |
C. parvum Iowa type II C. hominis TU502 |
3941 3886 |
|
C. parvum oocysts |
Iowa | LC-MS/MS | SEQUEST search tool, NR database at the NCBI |
C. parvum Iowa type II C. hominis TU502 |
3941 3886 |
|
C. parvum Isolate |
Iowa | SDS-PAGE and LC-MS/MS | MASCOT in the NCBI, CryptoDB v5.0, EupathDB v2.16 databases | C. parvum Iowa type II | 3941 |
| C. andersoni oocysts | -1 | SDS-PAGE and LC-MS/MS | MaxQuant search engine (v.1.5.2.8), UniProt database | C. andersoni 30847 | 3876 |
| Cryptosporidium spp. | - | MALDI-TOF MS | flexControl software on a microflex LT/SH MALDI-TOF |
C. parvum Iowa type II C. hominis TU502 |
3941 3886 |
| Cryptosporidium spp. | - | label-free proteomic quantification techniques and LC-MS/MS | Maxquant search engine (v.1.5.2.8, Max Planck Institute of Biochemistry, Munich, German) |
C. parvum Iowa type II C. hominis TU502 |
3941 3886 |
| C. parvum | - | multi-omics approach: GC-MS and LC-HR-MS | The Protein Discoverer 2.2 (Thermo Scientific) and Sequest HT search engines |
C. parvum Iowa type II C. hominis TU502 |
3941 3886 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
