Submitted:
11 July 2023
Posted:
12 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Conduits of Psychomotricity and Their Manifestation in Swimming
2. Materials and Methods
2.1. Aim and Hypotheses
2.2. Research Variables
2.3. Measurement and Evaluation of Variables
2.3. Statistical Analyses
3. Results
3.1. Descriptive Statistical Analysis
3.2. Inferential Statistical Analysis - Hypothesis Testing
| Research variables | Kolmogorov-Smirnov | Shapiro-Wilk | Distribution | ||||
| K-S | df | Sig. | S-W | df | Sig. | ||
| Manual dexterity | .146 | 76 | .000 | .926 | 76 | .000 | not normal |
| Body schema | .096 | 76 | .078 | .979 | 76 | .248 | normal |
| Static balance | .104 | 76 | .040 | .964 | 76 | .031 | not normal |
| Body balance on the water | .092 | 76 | .176 | .968 | 76 | .054 | normal |
| Coordination | .127 | 76 | .004 | .958 | 76 | .013 | not normal |
| Front crawl style technique | .101 | 76 | .053 | .974 | 76 | .118 | normal |
| Backstroke style technique | .123 | 76 | .006 | .956 | 76 | .010 | not normal |
| DV – swimming styles learning | .077 | 76 | .200* | .981 | 76 | .299 | normal |
| Independent variables | Dependent variable | Coefficient of correlation | Association level | Sig. |
|---|---|---|---|---|
| Manual dexterity | Technical execution of front crawl style | rs = 0,63 | moderate | p = 0,001 |
| Body schema | r = 0,80 | strong | ||
| Static balance | rs = 0,82 | strong | ||
| Body balance on the water | r = 0,78 | strong | ||
| General coordination | rs = 0,81 | strong |
| Independent variables | Dependent variable | Coefficient of correlation | Level of association | Sig. |
| Manual dexterity | Technical execution of backstroke style | rs = 0,57 | moderate | p = 0,001 |
| Body schema | rs = 0,77 | strong | ||
| Static balance | rs = 0,81 | strong | ||
| Body balance on the water | rs = 0,85 | strong | ||
| General coordination | rs = 0,78 | strong |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
1. Tests for measuring and evaluating independent variables
- ➢
- coordinating the movements of the upper limbs from the initial position standing slightly apart:
- 1)
- rotating the arms from the shoulder joint, simultaneously forward;
- 2)
- rotating the arms from the shoulder joint, simultaneously backwards;
- 3)
- rotation of the arms from the shoulder joint, simultaneously, the right forward and the left backward;
- 4)
- rotation of the arms from the shoulder joint, simultaneously, the left forward and the right backward;
- 5)
- arm shears in the transverse plane with the hands from thigh level above the head and vice versa, the lower limbs are perfectly stretched;
- ➢
- coordination of the lower limbs - jumping on the coordination scale
- 6)
- successive jumps on both legs;
- 7)
- successive jumps with the right leg, followed by jumps with the left leg;
- 8)
- successive alternating jumps (right/left);
- 9)
- successive jumps on both legs (from near to far; inside and outside the steps of the coordination ladder);
- 10)
- lateral jumps, successive, from one foot to another.
- ➢
- general coordination and spatial orientation
- 11)
- The Matorin test [144] which consisted of a jump on both feet with an attempt to turn 3600 around the longitudinal axis of the body.
2. Tests for Measuring the Dependent Variables
- -
- Assessment of the movement of the upper limbs in the active phase - action of the hand through the water:
- 1)
- the hand enters the water with the thumb;
- 2)
- the hand enters the water in the extension of the head between the shoulder and the sagittal plane;
- 3)
- the hand grabs the water (flexion of the hand on the forearm);
- 4)
- drawing water, the upper limb flexed at the elbow;
- 5)
- pushing the water, the palm reaches the thigh;
- 6)
- the hand leaves the water with the little finger;
- -
- Assessment of the movement of the upper limbs in the preparatory phase - the action of the hand through the air:
- 7)
- rotation of the arm from the shoulder joint, the forearm flexed on the arm, in the aerial way the elbow is higher than the hand;
- -
- Assessment of the movement of the lower limbs in the descending and ascending phase:
- 8)
- the whipping movement of the lower limbs;
- 9)
- plantar flexion of the foot, the heel leaves the water;
- 10)
- the range of motion between the two lower limbs is correct (35 - 45 cm)
- -
- Assessment of coordination between upper and lower limbs:
- 11)
- when executing a cycle of movements of the upper limbs, the presence of two cycles of movements of the lower limbs.
- -
- Assessment of lateral breathing (breathing with two arms) and its coordination with the execution technique:
- 12)
- the lateral twisting of the head (cervical area) is doubled by the twisting of the trunk only from the thoracic area (the hips are not involved in this movement), and the upper limb that is in the water must be stretched in the extension of the body;
- 13)
- the head does not lose contact with the water during lateral breathing (without head extension);
- 14)
- the distance between the chin and the chest is the same (both in the face lying position and during the lateral twisting movement);
- 15)
- inhalation is done through the mouth, deep, short, in the active phase (through the water) of an upper limb (right or left - at your choice), followed by a short apnea when the hand leaves the water;
- 16)
- exhalation through the mouth and nose, slow, long, in the active phase (through water) of the other upper limb (opposite to the one we referred to for inspiration);
- 17)
- the direction of movement on the water is linear, without left-right oscillations.
- -
- Assessment of the movement of the upper limbs in the active phase - the action of the hand through the water:
- 1)
- the hand enters the water with the little finger;
- 2)
- the hand enters the water in the extension of the head next to the shoulder;
- 3)
- the hand grabs the water (flexion of the hand on the forearm);
- 4)
- pulling the water, the upper limb flexed at the elbow (side rowing);
- 5)
- water push, the palm reaches the thigh;
- 6)
- the hand leaves the water with the thumb;
- -
- Assessment of the movement of the upper limbs in the preparatory phase - the action of the hand through the air:
- 7)
- rotation of the upper limb from the shoulder joint, perfectly stretched from the elbow and hand joints; this movement is doubled by the internal rotation (in the longitudinal axis) of the upper limb near the shoulder so that the hand enters the water with the little finger;
- -
- Assessment of the movement of the lower limbs in the descending and ascending phase:
- 8)
- whipping movement of lower limbs;
- 9)
- plantar flexion of the foot, the phalanges of the toes leave the water;
- 10)
- the amplitude of the movement between the two lower limbs is correct (35 - 45 cm);
- 11)
- the head (cervical area) does not lose contact with the water;
- 12)
- the head is in a slight flexion with respect to the trunk, the distance between the chin and the chest is the same (over the entire travel distance);
- -
- Assessment of coordination between upper and lower limbs:
- 13)
- when performing a cycle of upper limb movements, the presence of two lower limb movement cycles;
- -
- Assessment of breathing and its coordination with the execution technique:
- 14)
- inhalation is done through the mouth, deep, short, in the first third of the airway of an upper limb (right or left - at your choice), followed by a short apnea until the limb enters the water;
- 15)
- exhalation through the mouth and nose, slow, long, in the active phase (through water) of the same upper limb (to which we referred for inspiration);
- 16)
- the direction of movement on the water is linear, without left-right oscillations.
Appendix B
| N |
Valid |
Subjects 76 |
Male 40 |
Female 36 |
| Lack | 0 | 0 | 0 | |
| Arithmetic mean (M) | 74.08 | 73.38 | 74.86 | |
| Standard error of the mean (ES) | 1.157 | 1.615 | 1.672 | |
| Median (Me) | 75 | 75 | 75 | |
| Module (Mo) | 70 | 70a | 80 | |
| Standard Deviation (DS) | 10.090 | 10.215 | 10.035 | |
| Amplitude (A) | 40 | 40 | 40 | |
| The minimum value (Vmin) | 50 | 50 | 50 | |
| Maximum value (Vmax) | 90 | 90 | 90 | |
| N | Valid | Subjects 76 |
Male 40 |
Female 36 |
| Lack | 0 | 0 | 0 | |
| Arithmetic mean (M) | 19.20 | 18.65 | 19.81 | |
| Standard error of the mean (ES) | .410 | .569 | .581 | |
| Median (Me) | 19 | 19 | 19.50 | |
| Module (Mo) | 19 | 19 | 19 | |
| Standard Deviation (DS) | 3.570 | 3.599 | 3.487 | |
| Amplitude (A) | 16 | 14 | 14 | |
| The minimum value (Vmin) | 12 | 12 | 14 | |
| Maximum value (Vmax) | 28 | 26 | 28 | |
| Laterality on the right side | Gender | Research subjects | |||
| Valid | Total | ||||
| N | Percentages | N | Percentages | ||
| Right-hand dominant | Male | 36 | 53,73% | 67 | 100.0% |
| Female | 31 | 46,27% | |||
| Right-leg dominant | Male | 36 | 53,73% | 67 | 100.0% |
| Female | 31 | 46,27% | |||
| Laterality on the left side | Gender | Research subjects | |||
| Valid | Total | ||||
| N | Percentages | N | Percentages | ||
| Left-hand dominant | Male | 4 | 44,44% | 9 | 100.0% |
| Female | 5 | 55,56% | |||
| Left-leg dominant | Male | 4 | 44,44% | 9 | 100.0% |
| Female | 5 | 55,56% | |||
| Laterality on the right side | Age | Research subjects | |||
| Valid | Total | ||||
| N | Percentages | N | Percentages | ||
| Right-hand dominant Right-leg dominant |
6,0 - 6,11 years | 16 | 23,88% | 67 | 100.0% |
| 7,0 - 7,11 years | 19 | 28,36% | |||
| 8,0 - 8,11 years | 17 | 25,37% | |||
| 9,0 - 9,11 years | 15 | 22,39% | |||
| Laterality on the right side | 6,0 - 6,11 years | 16 | 23,88% | 67 | 100.0% |
| 7,0 - 7,11 years | 19 | 28,36% | |||
| 8,0 - 8,11 years | 17 | 25,37% | |||
| 9,0 - 9,11 years | 15 | 22,39% | |||
| N | Valid | Subjects 76 |
Male 40 |
Female 36 |
| Lack | 0 | 0 | 0 | |
| Arithmetic mean (M) | 11.8405 | 11.2088 | 12.5425 | |
| Standard error of the mean (ES) | .23960 | .33649 | .30460 | |
| Median (Me) | 12.0900 | 11.2400 | 12.9150 | |
| Module (Mo) | 12.24a | 13.61a | 12.24 | |
| Standard Deviation (DS) | 2.08882 | 2.12814 | 1.82758 | |
| Amplitude (A) | 8.29 | 7.71 | 6.92 | |
| The minimum value (Vmin) | 7.35 | 7.35 | 8.72 | |
| Maximum value (Vmax) | 15.64 | 15.06 | 15.64 | |
| N | Valid | Subjects 76 |
Male 40 |
Female 36 |
| Lack | 0 | 0 | 0 | |
| Arithmetic mean (M) | 18.4809 | 17.7955 | 19.2425 | |
| Standard error of the mean (ES) | .24170 | .27532 | .37276 | |
| Median (Me) | 18.3600 | 17.4500 | 19.0500 | |
| Module (Mo) | 15.98a | 16.04a | 15.74a | |
| Standard Deviation (DS) | 2.10711 | 1.74126 | 2.23654 | |
| Amplitude (A) | 8.62 | 6.70 | 7.70 | |
| The minimum value (Vmin) | 14.82 | 14.82 | 15.74 | |
| Maximum value (Vmax) | 23.44 | 21.52 | 23.44 | |
| N | Valid | Subjects 76 |
Male 40 |
Female 36 |
| Lack | 0 | 0 | 0 | |
| Arithmetic mean (M) | 12.09 | 11.58 | 12.67 | |
| Standard error of the mean (ES) | .243 | .377 | .270 | |
| Median (Me) | 12.00 | 12.00 | 13.00 | |
| Module (Mo) | 14 | 12 | 14 | |
| Standard Deviation (DS) | 2.118 | 2.385 | 1.621 | |
| Amplitude (A) | 9 | 9 | 6 | |
| The minimum value (Vmin) | 7 | 7 | 10 | |
| Maximum value (Vmax) | 16 | 16 | 16 | |
References
- Gordon, W.A. Structura şi dezvoltarea personalităţii. B: Didactică şi Pedagogică: București, Romania, 1991. [Google Scholar]
- Oliveira, G. Psicomotricidade: Educação e Reeducação num enfoque Psicopedagógico. 5th ed., Vozes: Sao Paolo, Brazil, 2001.
- Borges, M.F.; Rubio, J.A.S. A Educacao Psicomotora como instrumento no Processo de Aprendizagem, Rev. Eletronica Saberes Educ. 2013, 4(1), 1–12. [Google Scholar]
- Rabelo, K.I.L.; Aquino, G.B. Relacao entre psicomotricidade e desenvolvimento infantil: um relato de experiencia. Rev. Cient. Faminas 2014, 10, 109–123. [Google Scholar]
- Viscione, I.; D'elia, F.; Vastola, R.; Sibilio, M. Psychomotor assisment in Teaching and Educational research, Athens J. Educ. 2017, 4(2), 169–178. [Google Scholar]
- Wallon, H. Evoluţia psihologică a copilului. Pro Humanitate: București, Romania, 1975.
- Piaget, J.; Barber, I. Psihologia copilului. Cartier: București, Romania, 2005.
- Sas, L.G.; Farina, E.F.; Ferreiro, M.C.; Fernandez, J.E.R.; Couto, J.M.P. Improvement of self-esteem and emotional intelligence through psychomotricity and social skills workshops. Sportis Sci J 2017, 3(1), 187–205. [Google Scholar]
- Shingjergji, A. Psycho-motor education of the pre-school children - a possibility for qualitative training. Int. lett. Soc. Humanist. Sci. 2014, 6, 74–80. [Google Scholar] [CrossRef]
- Albu, A.; Albu, C. Psihomotricitate. Spiru Haret: Iași, Romania, 1999.
- Popescu, O.; Popescu, V. Aspects on the motor and psychomotor learning at children with intellectual disabilities, Discobolul 2015, 11(2), 39-42.
- Schmidt, R.A.; Lee, T.D.; Carolee, W.; Wulf, G.; Zelaznik, H. Motor Control and Learning, 6th ed., Human Kinetics: Champaign, IL, SUA, 2019.
- Williams, S.J.; Kendall, L. Perceptions of elite coaches and sports scientists of the research needs for elite coaching practice. J Sports Sci. 2007, 25(14), 1577–1586. [Google Scholar] [CrossRef]
- Martindale, R.; Nash, C. (2013). Sport science relevance and application: Perceptions of UK coaches. J Sports Sci. 2013, 31(8), 807-819. [CrossRef]
- Waters, A.; Phillips, E.; Panchuk, D.; Dawson, A. The coach-scientist relationship in high-performance sport: Biomechanics and sprint coaches. Int J Sports Sci Coach 2019, 14(5), 617–628. [Google Scholar] [CrossRef]
- Côté, J.; Young, B.W.; North, J.; Duffy, P. Towards a definition of excellence in sport coaching. Int. J. Coach. Sci. 2007, 1(1), 3–17. [Google Scholar]
- Phillips, E.; Farrow, D.; Ball, K.; Helmer, R. Harnessing and understanding feedback technology in applied settings. Sports Med. 2013, 43(10), 919–925. https://link.springer.com/article/10.1007/s40279-013-0072-7.
- Steel, K.A.; Harris, B.; Baxter, D.; King, M. Skill acquisition specialists, coaches and athletes: The current state of play? Sport Behav. 2013, 36(3), 291–305. [Google Scholar]
- Davids, K.; Renshaw, I.; Pinder, R.; Barris, S.; Greenwood, D. Enhancing skill acquisition and expertise in high performance programmes. In Sport and exercise psychology: Practitioner case studies, Weston, N., Breslin, G., Cotterill S., Eds., 2017, Wiley-Blackwell, UK, pp. 329-353.
- Dehghansai, N.; Headrick, J.; Renshaw, I.; Pinder, R.; Barris, S. Olympic and paralympic coach perspectives on effective skill acquisition support and coach development. Sport Educ. Soc. 2019, 25(6), 667–680. [Google Scholar] [CrossRef]
- Brackley, V.; Barris, S.; Tor, E.; Farrow, D. Coaches' perspective towards skill acquisition in swimming: What practice approaches are typically applied in training? J Sports Sci 2020, 38(22), 2532–2542. [Google Scholar] [CrossRef] [PubMed]
- Ginting, A.; Asmawi, M.; Tangkudung, J.; Heri, Z.; Suprayitno, S. Implementation of I-S-L-A-M Learning Model in Improving Free Style Swimming Skill. Advances in Social Science, Education and Humanities Research, 5th International Conference on Physical Education, Sport, and Health 2019, 362, 170–173. [Google Scholar]
- Barbosa, T.M.; Bragada, J.A.; Reis, V.M.; Marinho, D.A.; Carvalho, C.; Silva, A.J. Energetics and biomechanics as determining factors of swimming performance: updating the state of the art. J Sci Med Sport 2010a, 13(2), 262–269. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, J.M.; Escalante, Y.; Rodríguez, F.A. A multivariate analysis of performance in young swimmers. Pediatr Exerc Sci 2010, 22(1), 135–151. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Costa, M.; Marinho, D.A.; Coelho, J.; Moreira, M.; Silva, A.J. Modeling the links between young swimmers' performance: energetic and biomechanic profiles. Pediatr Exerc Sci 2010b, 22(3), 379–391. [Google Scholar] [CrossRef] [PubMed]
- Geladas, N.D.; Nassis, G.P.; Pavlicevic, S. Somatic and physical traits affecting sprint swimming performance in young swimmers. Int J Sports Med 2005, 26(2), 139–144. [Google Scholar] [CrossRef]
- Lätt, E.; Jürimäe, J.; Haljaste, K.; Cicchella, A.; Purge, P.; Jürimäe, T. Longitudinal development of physical and performance parameters during biological maturation of young male swimmers. Percept Mot Skills 2009b, 108(1), 297–307. [Google Scholar] [CrossRef]
- Lätt, E.; Jürimäe, J.; Haljaste, K.; Cicchella, A.; Purge, P.; Jürimäe, T. Physical development and swimming performance during biological maturation in young female swimmers. Coll Antropol 33(1), 117–122. [PubMed]
- Silva, A.J.; Costa, A.M.; Oliveira, P.M.; Reis, V.M.; Saavedra, J.; Perl, J.; Rouboa, A.; Marinho, D.A. The use of neural network technology to model swimming performance. J Sports Sci Med 2007, 6(1), 117–125. [Google Scholar] [PubMed]
- Rogulj, N.; Papić, V.; Cavala, M. Evaluation models of some morphological characteristics for talent scouting in sport. Coll Antropol 2009, 33(1), 105–110. [Google Scholar] [PubMed]
- Hohmann, A.; Seidel, I. Talent prognosis in young swimmers. In: Biomechanics and Medicine in Swimming XI, Kjendlie, P.L., Stallman, R.K., Cabri J., Eds., Norwegian School of Sport Sciences: Oslo, 2010, pp. 262-264.
- Lafon, R. Vocabulaire de psychopedagogie et de psychiatrie infantile. PUF: Paris, France, 1969.
- Păunescu, C. Copilul deficient - cunoașterea și educarea lui. Științifică și Enciclopedică: București, Romania, 1983.
- Radu, D.I.; Ulici, G. Evaluarea şi educarea psihomotricităţii. Fundația Humanitas: București, Romania, 2002.
- Garcia, A.C. The play and the psychomotricity, Monograph. Postgraduate degree in Psychomotricity, Universidade Cândido Mendes: Rio de Janeiro, Brazil, 2007.
- Mendoza, V. Dessarollo infantil. La teoria de Wallon. Mexico: Asociacion Oaxaquena de Psichologia A.C. 2007.
- Cro, M.; Andreucci, L.; Pereira, A.; Pinho, A.; Chova, L.; Belenguer, D.; Martinez, A. Psychomotricty, health and well-being in childhood education. Edulearn11: 3rd International Conference on Education and New Learning Technologies 2011, 4716-4722.
- Epuran, M. Motricitate şi psihism în activităţile corporale. Prolegomene la o metateorie a activităţilor corporale, ludice, gimnice, agonistice, recreative, compensatorii. Vol. 2, FEST: București, Romania, 2013.
- Merida-Serrano, R.; Olivares-Garcia, M.D.; Gonzalez-Alfaya, M.E. Discovering the world through the body in the childhood. The importance of materials in the child psychomotricity, Retos 2018, 34, 329–336. [Google Scholar]
- McGrew, K.S. The Cattell-Horn-Carroll Theory of Cognitive Abilities: Past, Present, and Future. In Contemporary Intellectual Assessment: Theories, Tests, and Issues, 2nd ed., Flanagan, D.P., Harrison, P.L., Eds., The Guilford Press: New York, USA, 2005, pp. 136-181.
- McGrew, K.S. CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research, Intelligence 2009, 37(1), 1-10. [CrossRef]
- Newton, J.H.; McGrew, K.S. Introduction to the special issue: Current research in Cattell–Horn–Carroll–based assessment, Psychol Sch. 2010, 47(7), 621-634. [CrossRef]
- Schneider, W.J.; McGrew, K.S. The Cattell–Horn–Carroll theory of cognitive abilities. In Contemporary intellectual assessment: Theories, tests, and issues, Flanagan, D.P., Harrison P.L., Eds., The Guilford Press: New York, USA, 2018, pp. 73–163.
- de Vignemont, F. Body schema and body imagePros and cons, Neuropsychologia 2010, 48(3), 669-680. [CrossRef]
- Teixeira, H.J.; Abelairas-Gomez, C.; Arufe-Giráldez, V.; Pazos-Couto, J.M.; Barcala-Furelos, R. Influence of a physical education plan on psychomotor development profiles of preschool children. J. Hum. Sport Exer. 2015, 10(1), 126–140. [Google Scholar] [CrossRef]
- De Meur, A.; Staes, L. Psyhomotricité. Ėducation et rééducation, niveaux maternel et primaire. Ed. De Boeck: Bruxelles, Belgium, 1988.
- Matsumiya, K. Multiple representations of the body schema for the same body part. Proc Natl Acad Sci 2022, 119(4), 1–9. [Google Scholar] [CrossRef]
- Haggard, P.; Wolpert, D. Disorders of body scheme. In Higher-Order Motor Disorders, Freund, H.J., Jeannerod, M., Hallett, M., Leiguarda, R., Eds., Oxford Unviersity Press: Oxford, UK, 2004, 1-7.
- Annett, M. Handedness in the children of two left-handed parents. BrJ Psychol 1974, 65, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.L.; Scarr, S.S.; Barker, W.B.; Katz, S. Left-handedness in twins: incidence and patterns of performance in an adolescent sample. Behav Genet 1976, 6, 189–203. [Google Scholar] [CrossRef]
- Longstreth, L.E. Human handedness: more evidence for genetic involvement. J Genet Psychol 1980, 137, 275–283. [Google Scholar] [CrossRef]
- Hicks, R.E.; Hinsborne, M. Human handedness: a partial cross-fostering study. Science 1976, 192, 908–910. [Google Scholar] [CrossRef]
- Bondi, D.; Prete, G.; Malatesta, G.; Robazza, C. Laterality in Children: Evidence for Task-Dependent Lateralization of Motor Functions. Int J Environ Res Public Health 2020, 17(18), 6705. [Google Scholar] [CrossRef]
- Scharoun, S.M.; Bryden, P.J. Hand preference, performance abilities, and hand selection in children. Front. Psychol. 2014, 5:82. [CrossRef]
- Stancher, G.; Sovrano, V.A.; Vallortigara, G. Motor asymmetries in fishes, amphibians, and reptiles. Prog Brain Res 2018, 238, 33–56. [Google Scholar] [CrossRef]
- Corballis, M.C. Evolution of cerebral asymmetry. Prog Brain Res 2019, 250, 153–178. [Google Scholar] [CrossRef]
- Bizouard, P. Développement psychomoteur du nourrisson et de l´enfant. La revue du Practicien: Paris, France, 1995.
- Risch, N.; Pringle, G. Segregation analysis of human hand preference. Behav Genet 1985, 15, 385–400. [Google Scholar] [CrossRef] [PubMed]
- McManus, I.C. The inheritance of left-handedness. Ciba Found Symp 1991, 162, 251–281. [Google Scholar] [PubMed]
- Geschwind, D.H.; Miller, B.L. Molecular Approaches to Cerebral Laterality: Development and Neurodegeneration. Am. J. Med. Genet. 2001, 101, 370–381. [Google Scholar] [CrossRef]
- Brancucci, A.; Lucci, G.; Mazzatenta, A.; Tommasi, L. Asymmetries of the human social brain in the visual, auditory and chemical modalities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 895–914. [Google Scholar] [CrossRef]
- Carling, C.; Williams, M.; Reilly, T. Handbook of Soccer Match Analysis: A Systematic Approach to Improving Performance. Routledge: London, UK, 2005.
- Hodges, N. J.; Starkes, J. L.; MacMahon, C. Expert performance in sport: a cognitive perspective. In The Cambridge Handbook of Expertise and Expert Performance, Ericsson, K.A., Charness, N., Feltovich, P.J., Hoffman, R.R., Eds., Cambridge University Press: London, UK, 2006, pp. 471-488.
- Hagemann, N.; Strauß, B.; Cañal-Bruland, R. Training perceptual skill by orienting visual attention. J. Sport Exerc. Psychol 2009, 28, 143–158. [Google Scholar] [CrossRef]
- Teixeira, L. A.; Oliveira, D. L.; Romano, R. G.; Correa, S.C. Leg preference and interlateral asymmetry of balance stability in soccer players. Res. Q. Exerc. Sport 2013, 82, 21–27. [Google Scholar] [CrossRef]
- Bishop, D.T.; Wright, M.J. , Jackson, R. C., Abernethy, B. Neural bases for anticipation skill in soccer: an fMRI study. J. Sport Exerc. Psychol. 2013, 35, 98–109. [Google Scholar] [CrossRef]
- Loffing, F.; Solter, F.; Hagemann, N.; Strauss, B. Accuracy of outcome anticipation, but not gaze behavior, differs against left and right-handed penalties in team-handball goalkeeping. Front. Psychol. 2015, 6:1820. [CrossRef]
- Bell, F. Principles of mechanics and biomechanics. Stanley Thornes: Cheltenham, UK, 1998.
- Berg, K.; Wood-Dauphinee, S.; Williams, J.; Gayton, D. Measuring balance in the elderly: preliminary development of an instrument. Physiother Can 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Braune, W.; Fischer, O. On the centre of gravity of the human body. Springer-Verlag: Berlin, Germany, 1985, 1(1), 59-60. [CrossRef]
- Hall, S.J. Basic biomechanics. 8th ed., McGraw-Hill Education: New York, USA, 1991.
- Pollock, A.S.; Durward, B.R.; Rowe, P.J.; Paul, J.P. What is balance? Clin. Rehab. 2000, 14, 402–406. [Google Scholar] [CrossRef]
- Zatsiorsky, V.M.; Duarte, M. Instant equilibrium point and its migration in standing tasks: rambling and trembling components of the stabilogram. Motor Control 1999, 3(1), 28–38. [Google Scholar] [CrossRef] [PubMed]
- Daneshjoo, A.; Mokhtar, A.H.; Rahnama, N. , Yusof, A. The Effects of Comprehensive Warm-Up Programs on Proprioception, Static and Dynamic Balance on Male Soccer Players. PLoS ONE 2012, 7(12):e51568. [CrossRef]
- King, M.B.; Judge, J.O.; Wolfson, L. Functional base of support decreases with age. J Gerontol 1994, 49(6):M, 258–263.
- McGuine, T.A.; Greene, J.J.; Best, T.; Leverson, G. Balance as a predictor of ankle injuries in high school basketball players. Clin J Sport Med 2000, 10(4), 239–44. [Google Scholar] [CrossRef] [PubMed]
- Hrysomallis, C. Relationship between balance ability, training and sports injury risk. Sports Med 2007, 37(6), 547–56. [Google Scholar] [CrossRef]
- Hrysomallis, C.; McLaughlin, P.; Goodman, C. Relationship between static and dynamic balance tests among elite Australian Footballers. J Sci Med Sport 2006, 9(4), 288–91. [Google Scholar] [CrossRef]
- Maurer, C.; Mergner, T.; Peterka, R.J. Multisensory control of human upright stance. Exp Brain Res 2006, 171(2), 231–50. [Google Scholar] [CrossRef]
- Paillard, T. Plasticity of the postural function to sport and/or motor experience. Neurosci Biobehav Rev 2017, 72, 129–152. [Google Scholar] [CrossRef] [PubMed]
- Adlerton, A.K.; Moritz, U.; Moe-Nilssen, R. Forceplate and accelerometer measures for evaluating the effect of muscle fatigue on postural control during one-legged stance. Physiother Res Int. 2003; 8, 187–199. [Google Scholar] [CrossRef]
- Hrysomallis, C. Balance ability and athletic performance. Sports Med 2011, 41(3), 221–232. [Google Scholar] [CrossRef]
- Emery, C.A.; Meeuwisse, W.H. The effectiveness of a neuromuscular prevention strategy to reduce injuries in youth soccer: a cluster-randomised controlled trial. Br J Sports Med 2010, 44(8), 555–562. [Google Scholar] [CrossRef]
- Eils, E.; Schröter, R.; Schröder, M.; Gerss, J.; Rosenbaum, D. Multistation proprioceptive exercise program prevents ankle injuries in basketball. Med Sci Sports Exerc 2010, 42(11), 2098–2105. [Google Scholar] [CrossRef]
- Yanai, T.; Wilson, B.D. How does buoyancy influence front-crawl performance? Exploring the assumptions. Sports Technol 2008, 1, 89–99. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Costa, M.J.; Morais, J.E.; Moreira, M.M.; Silva, A.J.; Marinho, D.A. How Informative are the Vertical Buoyancy and the Prone Gliding Tests to Assess Young Swimmers' Hydrostatic and Hydrodynamic Profiles? J Hum Kinet 2012, 32, 21–32. [Google Scholar] [CrossRef] [PubMed]
- McLean, S.P.; Hinrichs, R.N. Buoyancy, Gender, and Swimming Performance. Journal of Applied Biomechanics 2000, 16(3), 248–263. [Google Scholar] [CrossRef]
- Corbin, C.B.; Pangrazi, R.P.; Franks, B.D. Definitions: health, fitness, and physical activity. Pres. Counc. Phys. Fit. Sports Res. Dig 2000, 3, 1–11. [Google Scholar]
- Bruton, M.; O’Dwyer, N. Synergies in coordination: a comprehensive overview of neural, computational, and behavioral approaches. J. Neurophysiol 2018, 120, 2761–2774. [Google Scholar] [CrossRef]
- Kimura, A.; Yokozawa, T.; Ozaki, H. Clarifying the Biomechanical Concept of Coordination Through Comparison With Coordination in Motor Control. Front Sports Act Living 2021, 3:753062. [CrossRef]
- Wannier, T.; Bastiaanse, C.; Colombo, G.; Dietz, V. Arm to leg coordination in humans during walking, creeping and swimming activities. Exp Brain Res 2001, 141(3), 375–379. [Google Scholar] [CrossRef]
- Donker, S.F.; Beek, P.J.; Wagenaar, R.C.; Mulder, T. (2001). Coordination Between Arm and Leg Movements During Locomotion. J. Mot. Behav. 2001, 33(1), 86–102. [Google Scholar] [CrossRef]
- Seifert, L.; Vantorre, J.; Lemaitre, F.; Chollet, D.; Toussaint, H.M. ; Vilas-Boas; J. P. Different Profiles of the Aerial Start Phase in Front Crawl. J. Strength Cond. 2010, 24(2), 507–516. [Google Scholar] [CrossRef]
- Schneider, W.J.; McGrew, K.S. The Cattell-Horn-Carroll model of intelligence. In Contemporary intellectual assessment: Theories, tests, and issues, Flanagan, D.P., Harrison P.L., Eds., The Guilford Press: New York, USA, 2012, pp. 99–144.
- Knobbe, T.J.; Kremer, D.; Eisenga, M.F.; Corpeleijn, E.; Annema, C.; Spikman, J.M.; Navis, G.; Berger, S.P.; Bakker, S.J.L. Hand dexterity, daily functioning and health-related quality of life in kidney transplant recipients. Sci Rep 2022, 12:16208. [CrossRef]
- Martin, J.A.; Ramsay, J.; Hughes, C.; Peters, D.M.; Edwards, M.G. Age and grip strength predict hand dexterity in adults. PLoS One 2015, 10(2):e0117598, 1-18. [CrossRef]
- Kuloor, H. Assessment of Dexterity on sports persons and non-sports persons using MMDT. International Journal of Multidisciplinary Educational Research 2021, 10(7), 86–88. [Google Scholar]
- Deschodt, V.J.; Arsac, L.M.; Rouard, A.H. Relative contribution of arms and legs in humans to propulsion in 25-m sprint front-crawl swimming. Eur J Appl Physiol Occup Physiol 1999, 80(3), 192–199. [Google Scholar] [CrossRef]
- Chollet, D.; Chalies, S.; Chatard, J.C. A new index of coordination for the crawl: description and usefulness. Int J Sports Med 2000, 21(1), 54–59. [Google Scholar] [CrossRef]
- Lerda, R.; Cardelli, C.; Chollet, D. (2001). Analysis of the interactions between breathing and armactions in the front crawl. J. Hum. Mov. Stud. 2001, 40, 129–144. [Google Scholar]
- Yanai, T. Stroke frequency in front crawl: its mechanical link to the fluid forces required in non-propulsive directions. Jurnalul de Biomecanica 2003, 36(1), 53–62. [Google Scholar] [CrossRef] [PubMed]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 2012, 24(3), 69–71. [Google Scholar] [PubMed]
- Schober, P.; Boer, C.; Schwarte, L.A. (2018). Correlation Coefficients: Appropriate Use and Interpretation. Anesth Analg 2018, 126(5), 1763-1768. [CrossRef]
- Binet, A.; Vaschide, N. Expériences de force musculaire et de fond chez les jeunes garçons. L'année psychologique 1897, 4, 15–63. [Google Scholar] [CrossRef]
- Capol, M.; Walther, L. Contribution à l'étude de l'habileté manuelle. L'année psychologique 1953, 53(1), 35-58. [CrossRef]
- Fauche, S. Les paradigmes de la psychomotricité. In: Revue française de pédagogie 1994. 107, 97-107. [CrossRef]
- Junaid, K.A.; Fellowes, S. Gender Differences in the Attainment of Motor Skills on the Movement Assessment Battery for Children. Physical & Occupational Therapy in Pediatrics 2006, 26(1-2), 5-11. [CrossRef]
- Jaime, M.; Longard, J.; Moore, C. Developmental changes in the visual-proprioceptive integration threshold of children. J. Exp. Child Psychol 2014, 125, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rosa, H.R. Teste Goodenough-Harris e indicadores maturacionais de Koppitz para o desenho da figura humana: estudo normativo para crianças de São Paulo. Doctoral Thesis, Instituto de Psicologia, University of São Paulo, São Paulo, 2006. [Google Scholar] [CrossRef]
- Gherghuț, A. Sinteze de psihopedagogie specială. Ghid pentru concursuri și examene de obținere a gradelor didactice. Polirom: Iași, Romania, 2013.
- Rosa, H.R.; Boccato Alves, I.C. Estudo normativo do Teste Goodenough-Harris em crianças na cidade de São Paulo. Bol. – Acad. Paul. Psicol. 2014, 34(87), 336-351.
- Șunei, M.C.; Petracovschi, S.; Bota, E.; Almajan-Guță, B.; Nagel, A. Relationship between Body Schema and Scholar Maturity: A Study from the National College of Banat in Timisoara, Romania. Children 2022, 9(9), 1369. [Google Scholar] [CrossRef] [PubMed]
- León, M.P.; González-Martí, I.; Contreras-Jordán, O.R. What Do Children Think of Their Perceived and Ideal Bodies? Int J Environ Res Public Health 2021, 18(9), 4871. [Google Scholar] [CrossRef]
- Vallortigara, G.; Rogers, L.J. Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 2005, 28(4), 575–633. [Google Scholar] [CrossRef]
- Michel, G.F.; Nelson, E.L.; Babik, I.; Campbell, J.M.; Marcinowski, E.C. Multiple trajectories in the developmental psychobiology of human handedness. Adv Child Dev Behav 2013, 45, 227–260. [Google Scholar] [CrossRef]
- Parma, V.; Brasselet, R.; Zoia, S.; Bulgheroni, M.; Castiello, U. The origin of human handedness and its role in pre-birth motor control. Sci. Rep. 2017, 7, 16804. [Google Scholar] [CrossRef]
- Gooderham, S.E.; Bryden, P.J. Does your dominant hand become less dominant with time? Developmental Psychobiology 2014, 56(3), 537–546. [Google Scholar] [CrossRef] [PubMed]
- Schedler, S.; Kiss, R.; Muehlbauer, T. Age and sex differences in human balance performance from 6-18 years of age: A systematic review and meta-analysis. PLoS One 2019, 14(4):e0214434. [CrossRef]
- Schedler, S.; Tenelsen, F.; Wich, L.; Muehlbauer, T. Effects of balance training on balance performance in youth: role of training difficulty. BMC Sports Sci. Med. Rehabilitation 2020, 12(1):71. [CrossRef]
- Lenroot, R.K.; Giedd, J.N. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 2006, 30(6), 718–729. [Google Scholar] [CrossRef] [PubMed]
- Koolschijn, P.C.; Crone, E.A. Sex differences and structural brain maturation from childhood to early adulthood. Dev Cogn Neurosci 2013, 5, 106–118. [Google Scholar] [CrossRef]
- Barela, J.A.; Jeka, J.J.; Clark, J.E. Postural control in children. Coupling to dynamic somatosensory information. Exp Brain Res 2003, 150(4), 434–442. [Google Scholar] [CrossRef]
- Bair, W.N.; Kiemel, T.; Jeka, J.J.; Clark, J.E. Development of multisensory reweighting for posture control in children. Exp Brain Res 2007, 183(4), 435–446. [Google Scholar] [CrossRef]
- McLean, S.P.; Hinrichs, R.N. Sex differences in the centre of buoyancy location of competitive swimmers, Journal of Sports Sciences 2008, 16(4), 373-383. [CrossRef]
- Battaglia, G.; Giustino, V.; Tabacchi, G.; Lanza, M.; Schena, F.; Biino, V.; Giuriato, M.; Gallotta, M.C.; Guidetti, L.; Baldari, C.; Gennaro, A.; Palma, A.; Bellafiore, M. Interrelationship Between Age, Gender, and Weight Status on Motor Coordination in Italian Children and Early Adolescents Aged 6-13 Years Old. Front Pediatr 2021, 9:738294. [CrossRef]
- Davies, P.L.; Rose, J.D. Motor skills of typically developing adolescents: awkwardness or improvement? Phys Occup Ther Pediatr 2000, 20, 19–42. [Google Scholar] [CrossRef]
- D'Hondt, E.; Deforche, B.; Vaeyens, R.; Vandorpe, B.; Vandendriessche, J.; Pion, J.; Philippaerts, R.; de Bourdeaudhuij, I.; Lenoir, M. Gross motor coordination in relation to weight status and age in 5- to 12-year-old boys and girls: a cross-sectional study. Int J Pediatr Obes 2011, 6(2-2), e556-64. [CrossRef]
- Vandorpe, B.; Vandendriessche, J.; Lefevre, J.; Pion, J.; Vaeyens, R.; Matthys, S.; Philippaerts, R.; Lenoir, M. The KörperkoordinationsTest für Kinder: reference values and suitability for 6-12-year-old children in Flanders. Scand J Med Sci Sports 2011, 21(3), 378–88. [Google Scholar] [CrossRef]
- Ishii, K.; Shibata, A.; Adachi, M.; Nonoue, K.; Oka, K. Gender and grade differences in objectively measured physical activity and sedentary behavior patterns among Japanese children and adolescents: a cross-sectional study. BMC Public Health 2015, 15, 1254. [Google Scholar] [CrossRef]
- Stodden, D.F.; Goodway, J.D.; Langendorfer, S.J.; Roberton, M.A.; Rudisill, M.E.; Garcia, C.; Garcia, L.E. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relație, Quest 2008, 60(2), 290-306. [CrossRef]
- Lopes, V.P.; Stodden, D.F.; Bianchi, M.M.; Maia, J.A.R.; Rodrigues, L.P. Correlation between BMI and motor coordination in children. J. Sci. Med. Sport 2012, 15, 38–43. [Google Scholar] [CrossRef]
- Veldman, S.L.C.; Santos, R.; Jones, R.A.; Sousa-Sa, E.; Okely, A.D. Associations between gross motor skills and cognitive development in toddlers. Early Hum Dev 2019, 132, 39–44. [Google Scholar] [CrossRef]
- Musalek, M. Skilled performance tests and their use in diagnosing handedness and footedness at children of lower school age 8-10. Front. Psychol. 2015, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hammami, R.; Granacher, U.; Makhlouf, I.; Behm, D.G.; Chaouachi, A. Sequencing effects of balance and plyometric training on physical performance in youth soccer athletes. J Strength Cond Res 2016, 12, 3278–3289. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Kim, C.W.; Kim, Y.I.L.; Kim, K.B.; Lee, S.S.; Shin, K.O. Alterations of muscular strength and left and right limb balance in weightlifters after an 8-week balance training program. J Phys Ther Sci 2013, 25(7), 895–900. [Google Scholar] [CrossRef] [PubMed]
- Karami, B.; Ali, M.; Farzaneh, Y.; Homayoun, G.; Parmoon, A. Neuromuscular training as the basis for developing the level of the static and dynamic balance in selected students of physical. Int J Sport Sci Fit 2014, 4(1), 20–38. [Google Scholar]
- Dobrijević, S.; Moskovljević, L.; Dabović, M. The influence of proprioceptive training on young rhythmic gymnasts balance. Facta Univ 2016, 14(2), 247–255. [Google Scholar]
- Yanai, T. Buoyancy is the primary source of generating bodyroll in front-crawl swimming. J Biomech 2004, 37(5), 605–612. [Google Scholar] [CrossRef]
- Marinho, D.A.; Barbosa, T.M.; Klendlie, P.L.; Vilas-Boas, J.P.; Alves, F.B.; Rouboa, A.I.; Silva, A.J. Swimming Simulation. In: Computational Fluid Dynamics for sport simulation. Ed: Peter M., 2009, Heidelberg: Springer-Verlag, 33-61.
- Marinho, D.A.; Barbosa, T.M.; Costa, M.J.; Figueiredo, C.; Reis, V.M.; Silva, A.J.; Marques, M.C. Can 8-weeks of Training Affect Active Drag in Young Swimmers? J Sports Sci Med 2010, 9(1), 71–78. [Google Scholar] [PubMed]
- Pendergast, D.R.; Capelli, C.; Craig, A.B.; di Prampero, P.E.; Minetti, A.E.; Mollendorf, J.; Termin, I.I.; Zamparo, P. Biophysics in swimming, Rev Port Cien Desp 2006, 6(Supl.2), 185–189.
- Costa, A.M.; Silva, A.J.; Louro, H.; Reis, V.M.; Garrido, N.D.; Marques, M.C.; Marinho, D.A. Can the curriculum be used to estimate critical velocity in young competitive swimmers? J Sports Sci Med 2009, 8(1), 17–23. [Google Scholar] [PubMed]
- Popescu, G. Performance, Reference Systems and Strategies for Balance Training in Syndrome Down Subjects Beginning Gymnastics. Procedia - Social and Behavioral Sciences 2014, 117, 553–558. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
