Submitted:
10 July 2023
Posted:
11 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study design and participants
2.2. Data collection of dietary intake
2.3. Measurement items
2.4. Statistical analysis
3. Results
3.1. Characteristics of participants
3.2. Nutrient intake
3.3. Dietary intake
3.4. MIND diet score
3.5. Regression analysis
3.5.1. Nutrient intake and cognitive function
3.5.2. Dietary intake and cognitive function
3.5.3. MIND diet score and cognitive function
3.6. Blood biochemical parameters
4. Discussion
4.1. Basic characteristics of participants
4.2. Nutrients and cognitive impairment
4.3. Food categories and cognitive function
4.4. MIND diet and cognitive function
4.5. Body composition and blood biochemical parameters
4.6. Strengths and limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet. Public health 2022, 7, e105–e125. [CrossRef] [PubMed]
- Taiwan Dementia Association. Understanding Dementia-Dementia In Taiwan. Available online: http://tada2002.ehosting.com.tw/eng/dementia (accessed on 11 April 2023).
- Petersen, R.C. Mild cognitive impairment as a diagnostic entity. Journal of internal medicine 2004, 256, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Overman, A.; Chuang, C.C.; McIntosh, M. Quercetin attenuates inflammation in human macrophages and adipocytes exposed to macrophage-conditioned media. International journal of obesity (2005) 2011, 35, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jiang, H.; Wu, X.; Fang, J. Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. Mediators of inflammation 2016, 2016, 9340637. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Barnes, L.L.; Bennett, D.A.; Aggarwal, N.T. MIND diet slows cognitive decline with aging. Alzheimer's & dementia : the journal of the Alzheimer's Association 2015, 11, 1015–1022. [Google Scholar] [CrossRef]
- Berendsen, A.A.M.; Kang, J.H.; van de Rest, O.; Feskens, E.J.M.; de Groot, L.; Grodstein, F. The Dietary Approaches to Stop Hypertension Diet, Cognitive Function, and Cognitive Decline in American Older Women. Journal of the American Medical Directors Association 2017, 18, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND diet associated with reduced incidence of Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association 2015, 11, 1007–1014. [Google Scholar] [CrossRef]
- Berendsen, A.M.; Kang, J.H.; Feskens, E.J.M.; de Groot, C.; Grodstein, F.; van de Rest, O. Association of Long-Term Adherence to the MIND Diet with Cognitive Function and Cognitive Decline in American Women. The journal of nutrition, health & aging 2018, 22, 222–229. [Google Scholar] [CrossRef]
- van den Brink, A.C.; Brouwer-Brolsma, E.M.; Berendsen, A.A.M.; van de Rest, O. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diets Are Associated with Less Cognitive Decline and a Lower Risk of Alzheimer's Disease-A Review. Advances in nutrition (Bethesda, Md.) 2019, 10, 1040–1065. [Google Scholar] [CrossRef]
- Luciano, M.; Corley, J.; Cox, S.R.; Valdés Hernández, M.C.; Craig, L.C.; Dickie, D.A.; Karama, S.; McNeill, G.M.; Bastin, M.E.; Wardlaw, J.M. , et al. Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort. Neurology 2017, 88, 449–455. [Google Scholar] [CrossRef]
- Lin, I.H.; Duong, T.V.; Nien, S.W.; Tseng, I.H.; Wang, H.H.; Chiang, Y.J.; Chen, C.Y.; Wong, T.C. Dietary Diversity Score: Implications for Obesity Prevention and Nutrient Adequacy in Renal Transplant Recipients. International journal of environmental research and public health 2020, 17. [Google Scholar] [CrossRef]
- Taiwan Food and Drug Administration, Ministry of Health and Welfare, Taiwan. Taiwanese Food Composition and Nutrient Database, 2017. Available online: https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178 (accessed on 7 December 2018).
- Aronow, W.S. Hypertension and cognitive impairment. Annals of translational medicine 2017, 5, 259. [Google Scholar] [CrossRef]
- Longstreth, W.T., Jr.; Manolio, T.A.; Arnold, A.; Burke, G.L.; Bryan, N.; Jungreis, C.A.; Enright, P.L.; O'Leary, D.; Fried, L. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. Stroke 1996, 27, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.; Cooper, L.; Cai, J.; Toole, J.F.; Bryan, N.R.; Hutchinson, R.G.; Tyroler, H.A. Presence and severity of cerebral white matter lesions and hypertension, its treatment, and its control. The ARIC Study. Atherosclerosis Risk in Communities Study. Stroke 1996, 27, 2262–2270. [Google Scholar] [CrossRef] [PubMed]
- Luchsinger, J.A.; Mayeux, R. Dietary factors and Alzheimer's disease. The Lancet. Neurology 2004, 3, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Zou, L.; Kong, Z.; Yang, L. Cognitive Impact of Calorie Restriction: A Narrative Review. Journal of the American Medical Directors Association 2020, 21, 1394–1401. [Google Scholar] [CrossRef]
- Berrino, F. [Western diet and Alzheimer's disease]. Epidemiologia e prevenzione 2002, 26, 107–115. [Google Scholar]
- Roberts, R.O.; Roberts, L.A.; Geda, Y.E.; Cha, R.H.; Pankratz, V.S.; O'Connor, H.M.; Knopman, D.S.; Petersen, R.C. Relative intake of macronutrients impacts risk of mild cognitive impairment or dementia. Journal of Alzheimer's disease : JAD 2012, 32, 329–339. [Google Scholar] [CrossRef]
- Hernanz, A.; De la Fuente, M.; Navarro, M.; Frank, A. Plasma aminothiol compounds, but not serum tumor necrosis factor receptor II and soluble receptor for advanced glycation end products, are related to the cognitive impairment in Alzheimer's disease and mild cognitive impairment patients. Neuroimmunomodulation 2007, 14, 163–167. [Google Scholar] [CrossRef]
- Reddy, V.P.; Zhu, X.; Perry, G.; Smith, M.A. Oxidative stress in diabetes and Alzheimer's disease. Journal of Alzheimer's disease : JAD 2009, 16, 763–774. [Google Scholar] [CrossRef]
- Phillips, P. Omega 3 fatty acids for the treatment of dementia: a Cochrane review summary. International journal of nursing studies 2017, 67, 83–84. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Kang, S.A.; Lee, H.O.; Lee, B.H.; Park, J.S.; Kim, J.H.; Jung, I.K.; Park, Y.J.; Lee, J.E. Relationships between dietary intake and cognitive function level in Korean elderly people. Public health 2001, 115, 133–138. [Google Scholar] [CrossRef] [PubMed]
- van der Zwaluw, N.L.; van de Rest, O.; Tieland, M.; Adam, J.J.; Hiddink, G.J.; van Loon, L.J.; de Groot, L.C. The impact of protein supplementation on cognitive performance in frail elderly. European journal of nutrition 2014, 53, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C. The role of nutrition in Alzheimer's disease: epidemiological evidence. European journal of neurology 2009, 16 Suppl 1, 1–7. [Google Scholar] [CrossRef]
- Bolling, B.W.; Chen, C.Y.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutrition research reviews 2011, 24, 244–275. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, B.R.; Duarte, G.B.S.; Reis, B.Z.; Cozzolino, S.M.F. Brazil nuts: Nutritional composition, health benefits and safety aspects. Food research international (Ottawa, Ont.) 2017, 100, 9–18. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Benefits of Nut Consumption on Insulin Resistance and Cardiovascular Risk Factors: Multiple Potential Mechanisms of Actions. Nutrients 2017, 9. [Google Scholar] [CrossRef]
- Wang, X.; Hjorth, E.; Vedin, I.; Eriksdotter, M.; Freund-Levi, Y.; Wahlund, L.O.; Cederholm, T.; Palmblad, J.; Schultzberg, M. Effects of n-3 FA supplementation on the release of proresolving lipid mediators by blood mononuclear cells: the OmegAD study. Journal of lipid research 2015, 56, 674–681. [Google Scholar] [CrossRef]
- Agarwal, P.; Wang, Y.; Buchman, A.S.; Holland, T.M.; Bennett, D.A.; Morris, M.C. MIND Diet Associated with Reduced Incidence and Delayed Progression of ParkinsonismA in Old Age. The journal of nutrition, health & aging 2018, 22, 1211–1215. [Google Scholar] [CrossRef]
- Narayan, S.K.; Saxby, B.K.; Firbank, M.J.; O'Brien, J.T.; Harrington, F.; McKeith, I.G.; Hansrani, M.; Stansby, G.; Ford, G.A. Plasma homocysteine and cognitive decline in older hypertensive subjects. International psychogeriatrics 2011, 23, 1607–1615. [Google Scholar] [CrossRef]
- Butler, M.; Nelson, V.A.; Davila, H.; Ratner, E.; Fink, H.A.; Hemmy, L.S.; McCarten, J.R.; Barclay, T.R.; Brasure, M.; Kane, R.L. Over-the-Counter Supplement Interventions to Prevent Cognitive Decline, Mild Cognitive Impairment, and Clinical Alzheimer-Type Dementia: A Systematic Review. Annals of internal medicine 2018, 168, 52–62. [Google Scholar] [CrossRef]
- Kwok, T.; Wu, Y.; Lee, J.; Lee, R.; Yung, C.Y.; Choi, G.; Lee, V.; Harrison, J.; Lam, L.; Mok, V. A randomized placebo-controlled trial of using B vitamins to prevent cognitive decline in older mild cognitive impairment patients. Clinical nutrition (Edinburgh, Scotland) 2020, 39, 2399–2405. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sun, W.; Zhang, D. Association of Zinc, Iron, Copper, and Selenium Intakes with Low Cognitive Performance in Older Adults: A Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES). Journal of Alzheimer's disease : JAD 2019, 72, 1145–1157. [Google Scholar] [CrossRef]
- Odai, T.; Terauchi, M.; Suzuki, R.; Kato, K.; Hirose, A.; Miyasaka, N. Severity of subjective forgetfulness is associated with high dietary intake of copper in Japanese senior women: A cross-sectional study. Food science & nutrition 2020, 8, 4422–4431. [Google Scholar] [CrossRef]
- Safer, U.; Safer, V.B.; Demir, S.O.; Yanikoglu, I. Effects of Bisphosphonates and Calcium plus Vitamin-D Supplements on Cognitive Function in Postmenopausal Osteoporosis§. Endocrine, metabolic & immune disorders drug targets 2016, 16, 56–60. [Google Scholar] [CrossRef]
- Zhang, H.; Hardie, L.; Bawajeeh, A.O.; Cade, J. Meat Consumption, Cognitive Function and Disorders: A Systematic Review with Narrative Synthesis and Meta-Analysis. Nutrients 2020, 12. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Qiu, J.; Li, Y.; Wang, J.; Jiao, J. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. The American journal of clinical nutrition 2016, 103, 330–340. [Google Scholar] [CrossRef]
- Jiang, Y.W.; Sheng, L.T.; Pan, X.F.; Feng, L.; Yuan, J.M.; Pan, A.; Koh, W.P. Meat consumption in midlife and risk of cognitive impairment in old age: the Singapore Chinese Health Study. European journal of nutrition 2020, 59, 1729–1738. [Google Scholar] [CrossRef]
- Pastor-Valero, M.; Furlan-Viebig, R.; Menezes, P.R.; da Silva, S.A.; Vallada, H.; Scazufca, M. Education and WHO recommendations for fruit and vegetable intake are associated with better cognitive function in a disadvantaged Brazilian elderly population: a population-based cross-sectional study. PloS one 2014, 9, e94042. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Fanelli-Kuczmarski, M.T.; Kitner-Triolo, M.H.; Beydoun, H.A.; Kaufman, J.S.; Mason, M.A.; Evans, M.K.; Zonderman, A.B. Dietary antioxidant intake and its association with cognitive function in an ethnically diverse sample of US adults. Psychosomatic medicine 2015, 77, 68–82. [Google Scholar] [CrossRef]
- Dong, L.; Xiao, R.; Cai, C.; Xu, Z.; Wang, S.; Pan, L.; Yuan, L. Diet, lifestyle and cognitive function in old Chinese adults. Archives of gerontology and geriatrics 2016, 63, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Mottaghi, T.; Amirabdollahian, F.; Haghighatdoost, F. Fruit and vegetable intake and cognitive impairment: a systematic review and meta-analysis of observational studies. European journal of clinical nutrition 2018, 72, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Hosking, D.E.; Eramudugolla, R.; Anstey, K.J. [P4–363]: THE MIND DIET IS ASSOCIATED WITH REDUCED INCIDENCE OF 12-YEAR COGNITIVE IMPAIRMENT IN AN AUSTRALIAN SETTING. Alzheimer's & Dementia 2017, 13, P1429–P1430. [Google Scholar]
- Yang, Y.; Zhao, L.G.; Wu, Q.J.; Ma, X.; Xiang, Y.B. Association between dietary fiber and lower risk of all-cause mortality: a meta-analysis of cohort studies. American journal of epidemiology 2015, 181, 83–91. [Google Scholar] [CrossRef]
- van de Rest, O.; Wang, Y.; Barnes, L.L.; Tangney, C.; Bennett, D.A.; Morris, M.C. APOE ε4 and the associations of seafood and long-chain omega-3 fatty acids with cognitive decline. Neurology 2016, 86, 2063–2070. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Lampousi, A.M.; Knüppel, S.; Iqbal, K.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. The American journal of clinical nutrition 2017, 105, 1462–1473. [Google Scholar] [CrossRef]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. International journal of epidemiology 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- Wu, W.; Li, Y.; Wu, Y.; Zhang, Y.; Wang, Z.; Liu, X. Lutein suppresses inflammatory responses through Nrf2 activation and NF-κB inactivation in lipopolysaccharide-stimulated BV-2 microglia. Molecular nutrition & food research 2015, 59, 1663–1673. [Google Scholar] [CrossRef]
- Shakersain, B.; Rizzuto, D.; Larsson, S.C.; Faxén-Irving, G.; Fratiglioni, L.; Xu, W.L. The Nordic Prudent Diet Reduces Risk of Cognitive Decline in the Swedish Older Adults: A Population-Based Cohort Study. Nutrients 2018, 10. [Google Scholar] [CrossRef]
- Suemoto, C.K.; Gilsanz, P.; Mayeda, E.R.; Glymour, M.M. Body mass index and cognitive function: the potential for reverse causation. International journal of obesity (2005) 2015, 39, 1383–1389. [Google Scholar] [CrossRef]
- Kim, S.; Kim, Y.; Park, S.M. Body Mass Index and Decline of Cognitive Function. PloS one 2016, 11, e0148908. [Google Scholar] [CrossRef] [PubMed]
- Lalithambika, C.V.; Arun, C.S.; Saraswathy, L.A.; Bhaskaran, R. Cognitive Impairment and its Association with Glycemic Control in Type 2 Diabetes Mellitus Patients. Indian journal of endocrinology and metabolism 2019, 23, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Khullar, S.; Dhillon, H.; Kaur, G.; Sharma, R.; Mehta, K.; Aggarwal, R.; Singh, M.; Singh, P. The Prevalence and Predictors of Depression in Type 2 Diabetic Population of Punjab. Community mental health journal 2016, 52, 479–483. [Google Scholar] [CrossRef] [PubMed]
| Characteristic | All (n = 40) | Healthy (n = 19) | MCI (n = 21) | p | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Age, years | 71.4 | ± | 6.6 | 72.4 | ± | 7.0 | 70.5 | ± | 6.3 | 0.42 | |
| Male, n (%) | 15 (37.5%) | 6 (31.6%) | 9 (42.9%) | 0.48 | |||||||
| Female, n (%) | 25 (62.5%) | 13 (68.4%) | 12 (57.1%) | 0.48 | |||||||
| SBP, mmHg | 139.5 | ± | 19.3 | 137.9 | ± | 23.5 | 140.9 | ± | 15 | 0.61 | |
| DBP, mmHg | 77.3 | ± | 12.7 | 78.9 | ± | 12.5 | 75.8 | ± | 13 | 0.47 | |
| MMSE | 27.5 | ± | 1.7 | 27.7 | ± | 1.9 | 27.3 | ± | 1.5 | 0.32 | |
| CDR | 0.3 | ± | 0.3 | 0.0 | ± | 0.0 | 0.5 | ± | 0.0 | <0.0001* | |
| Overweight, n (%) Obesity, n (%) |
16 (40.0%) 9 (22.5%) |
7 (36.8%) 5 (26.3%) |
9 (42.9%) 4 (19.0%) |
0.71 | |||||||
| 0.60 | |||||||||||
| DM, n (%) | 13 (32.5%) | 5 (26.3%) | 8 (38.1%) | 0.44 | |||||||
| HTN, n (%) | 21 (52.5%) | 11 (57.9%) | 10 (47.6%) | 0.53 | |||||||
| Hyperlipidemia, n (%) | 12 (30.0%) | 5 (26.3%) | 7 (33.3%) | 0.65 | |||||||
| Nutrients | Healthy (N = 19) | MCI (N = 21) | p | ||||
|---|---|---|---|---|---|---|---|
| Energy, kcal | 1678.7 | ± | 305.2 | 1695.8 | ± | 278.3 | 0.72 |
| CHO, g | 188.6 | ± | 34.1 | 194.5 | ± | 33.4 | 0.59 |
| CHO, % | 45.4 | ± | 7.2 | 46.5 | ± | 6.3 | |
| Protein, g | 70.3 | ± | 16.4 | 70.1 | ± | 13.2 | 1.00 |
| Protein, % | 16.8 | ± | 2.6 | 16.5 | ± | 2.1 | |
| Fat, g | 72.5 | ± | 22.9 | 71.3 | ± | 22.0 | 0.72 |
| Fat, % | 38.3 | ± | 7.6 | 37.2 | ± | 7.1 | |
| MUFAs, g | 27.6 | ± | 9.8 | 28.1 | ± | 11.7 | 0.91 |
| MUFAs, % | 14.5 | ± | 3.2 | 14.9 | ± | 4.8 | |
| PUFAs, g | 23.0 | ± | 10.3 | 19.2 | ± | 8.2 | 0.18 |
| PUFAs, % | 12.2 | ± | 4.8 | 9.7 | ± | 2.7 | |
| n-3 FAs, g | 3.1 | ± | 1.6 | 2.2 | ± | 1.1 | 0.09 |
| n-6 FAs, g | 19.9 | ± | 9.3 | 17.0 | ± | 8.6 | 0.22 |
| SFAs, g | 19.6 | ± | 7.0 | 20.8 | ± | 6.8 | 0.61 |
| SFAs, % | 10.4 | ± | 2.7 | 10.8 | ± | 2.4 | |
| Cholesterol, mg | 249.6 | ± | 108.0 | 321.8 | ± | 138.3 | 0.10 |
| Fiber, g | 13.1 | ± | 6.8 | 14.2 | ± | 3.8 | 0.18 |
| Vitamin A, μg | 730.1 | ± | 343.8 | 962.4 | ± | 502.2 | 0.13 |
| Vitamin E, mg | 9.4 | ± | 7.1 | 18.9 | ± | 24.6 | 0.29 |
| Vitamin C, mg | 110.9 | ± | 64.2 | 110.8 | ± | 45.2 | 0.66 |
| Vitamin B1, mg | 1.1 | ± | 0.4 | 1.3 | ± | 0.6 | 0.37 |
| Vitamin B2, mg | 1.0 | ± | 0.3 | 1.0 | ± | 0.3 | 0.75 |
| Niacin, mg | 13.1 | ± | 3.7 | 14.2 | ± | 3.4 | 0.18 |
| Vitamin B6, mg | 1.5 | ± | 0.5 | 1.5 | ± | 0.4 | 0.63 |
| Vitamin B12, μg | 6.8 | ± | 10.3 | 3.0 | ± | 1.2 | 0.55 |
| Folic acid, μg | 250.6 | ± | 112.6 | 280.8 | ± | 82.5 | 0.18 |
| Sodium, mg | 1116.9 | ± | 935.0 | 832.3 | ± | 411.9 | 0.23 |
| Potassium, mg | 2151.6 | ± | 999.5 | 2089.0 | ± | 434.9 | 0.53 |
| Calcium, mg | 543.7 | ± | 415.5 | 508.5 | ± | 185.8 | 0.65 |
| Magnesium, mg | 261.9 | ± | 137.8 | 249.8 | ± | 63.5 | 0.42 |
| Phosphate, mg | 931.9 | ± | 280.1 | 927.5 | ± | 192.7 | 0.63 |
| Iron, mg | 11.1 | ± | 7.4 | 9.5 | ± | 2.3 | 0.68 |
| Zinc, mg | 9.7 | ± | 3.0 | 8.5 | ± | 2.2 | 0.30 |
| Copper, mg | 58.0 | ± | 42.8 | 106.9 | ± | 79.2 | 0.01* |
| Alcohol, g | 0.0 | ± | 0.0 | 1.8 | ± | 4.6 | 0.10 |
| Food component | Health (N = 19) | MCI (N = 21) | p | |||||
|---|---|---|---|---|---|---|---|---|
| Whole grains (servings) | 9.4 | ± | 2.1 | 9.7 | ± | 2.1 | 0.89 | |
| Soybeans, fish, eggs, and low-fat meat (servings) | 2.8 | ± | 1.2 | 1.8 | ± | 1.1 | 0.03* | |
| Soybeans, fish, eggs, and medium-fat meat (servings) | 2.6 | ± | 1.3 | 3.3 | ± | 1.5 | 0.23 | |
| Soybeans, fish, eggs, and high-fat meat (servings) | 0.1 | ± | 0.3 | 0.4 | ± | 0.6 | 0.18 | |
| Soybeans, fish, eggs, and super high-fat meat (servings) | 0.6 | ± | 0.8 | 0.5 | ± | 0.6 | 0.70 | |
| Vegetables (servings) | 1.1 | ± | 0.8 | 1.4 | ± | 1.0 | 0.51 | |
| Fruit (servings) | 2.1 | ± | 1.0 | 2.6 | ± | 0.8 | 0.15 | |
| Oils, fats, nuts, and seeds (servings) | 7.8 | ± | 3.6 | 6.5 | ± | 2.5 | 0.33 | |
| Dairy products (low fat) (servings) | 0.1 | ± | 0.2 | 0.1 | ± | 0.2 | 0.84 | |
| Dairy products (whole fat) (servings) | 0.3 | ± | 0.3 | 0.2 | ± | 0.3 | 0.61 | |
| Healthy (N = 19) | MCI (N = 21) | p | |||||
|---|---|---|---|---|---|---|---|
| Green leafy vegetables score | 0.8 | ± | 0.3 | 0.8 | ± | 0.2 | 1.00 |
| Other vegetables score | 0.5 | ± | 0.5 | 0.6 | ± | 0.5 | 0.79 |
| Berries score | 0.0 | ± | 0.0 | 0.0 | ± | 0.0 | 1.00 |
| Nuts score | 0.4 | ± | 0.4 | 0.4 | ± | 0.4 | 1.00 |
| Olive oil score | 0.2 | ± | 0.4 | 0.4 | ± | 0.5 | 0.15 |
| Butter, margarine score | 1.0 | ± | 0.1 | 1.0 | ± | 0.0 | 0.32 |
| Cheese score | 0.9 | ± | 0.2 | 1.0 | ± | 0.2 | 0.32 |
| Whole grains score | 0.2 | ± | 0.3 | 0.5 | ± | 0.5 | 0.06 |
| Fish (not fried) score | 0.8 | ± | 0.4 | 0.9 | ± | 0.4 | 0.59 |
| Soybeans score | 0.7 | ± | 0.4 | 0.6 | ± | 0.5 | 0.78 |
| Poultry (not fried) score | 0.6 | ± | 0.5 | 0.6 | ± | 0.5 | 0.81 |
| Red meat and products score | 0.1 | ± | 0.3 | 0.2 | ± | 0.3 | 0.28 |
| Fast and fried foods score | 0.9 | ± | 0.2 | 0.9 | ± | 0.3 | 0.76 |
| Pastries and sweets score | 0.8 | ± | 0.4 | 0.7 | ± | 0.5 | 0.35 |
| Wine score | 0.0 | ± | 0.0 | 0.0 | ± | 0.2 | 0.37 |
| MIND diet score | 8.0 | ± | 1.5 | 8.6 | ± | 1.2 | 0.17 |
| MMSE | CDR | |||||||
|---|---|---|---|---|---|---|---|---|
| Univariate | Multivariate | Univariate | Multivariate | |||||
| β | p | β | p | β | p | β | p | |
| Dietary intake levels | ||||||||
| Energy, kcal | <0.001 | 0.10 | -0.09 | 0.36 | <0.001 | 0.85 | -0.01 | 0.47 |
| CHO, g | 0.02 | 0.06 | 0.42 | 0.31 | <0.001 | 0.59 | 0.04 | 0.43 |
| Protein, g | 0.02 | 0.22 | 0.47 | 0.31 | <-0.001 | 0.96 | 0.03 | 0.63 |
| Fat, g | 0.01 | 0.41 | 0.39 | 0.67 | <-0.001 | 0.87 | 0.07 | 0.5 |
| MUFAs, g | 0.03 | 0.29 | 0.57 | 0.21 | <0.001 | 0.88 | 0.01 | 0.88 |
| PUFAs, g | <0.001 | 0.93 | -6.50 | 0.44 | -0.01 | 0.20 | -0.11 | 0.22 |
| n-3 PUFAs, g | -0.05 | 0.81 | 6.56 | 0.44 | -0.06 | 0.04* | -0.02 | 0.47 |
| n-6 PUFAs, g | <0.001 | 0.88 | 6.87 | 0.43 | <-0.001 | 0.32 | 0.13 | 0.18 |
| SFAs, g | 0.03 | 0.51 | 0.30 | 0.40 | <0.001 | 0.60 | 0.02 | 0.5 |
| Cholesterol, mg | <0.001 | 0.18 | 0.01 | 0.59 | <0.001 | 0.08 | -0.003 | 0.98 |
| Fiber, g | 0.05 | 0.35 | 0.17 | 0.61 | <0.001 | 0.54 | 0.03 | 0.46 |
| Vitamins | ||||||||
| Vitamin A, RE | <0.001 | 0.02* | <0.001 | 0.47 | <0.001 | 0.10 | < 0.001 | 0.87 |
| Vitamin E, mg | 0.02 | 0.11 | 0.14 | 0.13 | <0.001 | 0.11 | -0.004 | 0.46 |
| Vitamin C, mg | 0.01 | 0.008* | 0.01 | 0.17 | <-0.001 | 0.99 | -0.0009 | 0.68 |
| Vitamin B1, mg | 0.75 | 0.16 | 1.10 | 0.73 | 0.09 | 0.29 | 0.63 | 0.12 |
| Vitamin B2, mg | 1.64 | 0.06 | 2.21 | 0.61 | 0.05 | 0.73 | 0.26 | 0.71 |
| Niacin, mg | 0.08 | 0.31 | -0.01 | 0.95 | 0.01 | 0.31 | 0.05 | 0.08 |
| Vitamin B6, mg | 0.86 | 0.16 | 0.79 | 0.73 | -0.01 | 0.93 | -0.7 | 0.05 |
| Vitamin B12, μg | -0.01 | 0.82 | 0.01 | 0.98 | -0.01 | 0.09 | < 0.001 | 0.88 |
| Folic acid, μg | <0.001 | 0.08 | -0.01 | 0.36 | <0.001 | 0.34 | -0.0007 | 0.71 |
| Minerals | ||||||||
| Sodium, mg | <0.001 | 0.56 | <0.001 | 0.65 | <-0.001 | 0.21 | -0.0001 | 0.82 |
| Potassium, mg | <0.001 | 0.10 | -0.004 | 0.25 | <-0.001 | 0.80 | < 0.001 | 0.58 |
| Calcium, mg | <0.001 | 0.004* | 0.001 | 0.04* | <-0.001 | 0.73 | -0.0009 | 0.15 |
| Magnesium, mg | <0.001 | 0.17 | 0.02 | 0.58 | <-0.001 | 0.72 | -0.002 | 0.61 |
| Phosphate, mg | <0.001 | 0.48 | -0.01 | 0.54 | <-0.001 | 0.95 | < 0.001 | 0.88 |
| Iron, mg | 0.07 | 0.16 | 0.12 | 0.77 | -0.01 | 0.35 | 0.04 | 0.49 |
| Zinc, mg | 0.12 | 0.23 | -0.51 | 0.44 | -0.02 | 0.18 | -0.04 | 0.54 |
| Copper, mg | <0.001 | 0.24 | -0.05 | 0.13 | <0.001 | 0.02* | 0.001 | 0.02* |
| Alcohol, equivalent | 0.04 | 0.59 | 0.27 | 0.31 | 0.02 | 0.10 | 0.05 | 0.17 |
| MMSE | CDR | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Univariate | Multivariate a | Univariate | Multivariate b | |||||||
| β | p | β | p | β | p | β | p | |||
| Food component | ||||||||||
| Whole grains (ex) | 0.02 | 0.86 | 0.19 | 0.26 | 0.01 | 0.61 | -0.02 | 0.55 | ||
| Soybeans, fish, eggs, and meat (low fat) (ex) | -0.08 | 0.73 | -0.11 | 0.7 | -0.08 | 0.01* | -0.08 | 0.01* | ||
| Soybeans, fish, eggs, and meat (medium fat) (ex) | 0.12 | 0.52 | -0.01 | 0.96 | 0.04 | 0.15 | 0.05 | 0.17 | ||
| Soybeans, fish, eggs, and meat (high fat) (ex) | 0.07 | 0.90 | -0.16 | 0.83 | 0.14 | 0.12 | 0.15 | 0.16 | ||
| Soybeans, fish, eggs, and meat (super high fat) (ex) | -0.18 | 0.65 | -0.24 | 0.62 | -0.02 | 0.68 | 0.02 | 0.77 | ||
| Vegetables (ex) | 0.01 | 0.97 | 0.15 | 0.69 | 0.07 | 0.14 | 0.04 | 0.45 | ||
| Fruit (ex) | 0.76 | 0.01* | 0.81 | 0.01* | 0.04 | 0.33 | 0.03 | 0.59 | ||
| Oils, fats, nuts, and seeds (ex) | 0.09 | 0.30 | 0.15 | 0.18 | -0.02 | 0.21 | -0.03 | 0.06 | ||
| Dairy products (low fat) (ex) | -0.38 | 0.76 | 0.21 | 0.89 | 0.10 | 0.62 | 0.08 | 0.71 | ||
| Dairy products (whole fat) (ex) | 1.26 | 0.12 | 1.75 | 0.07 | -0.05 | 0.68 | 0.01 | 0.96 | ||
| Low-MIND diet score | High-MIND diet score | ||
|---|---|---|---|
| OR (95% CI) | OR (95% CI) | p | |
| MCI | 1 (Reference) | 0.23 (0.06-0.99) | 0.04* |
| All (N = 40) | Healthy (N = 19) | MCI (N = 21) | p | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| BUN, mg/dL | 17.2 | ± | 6.7 | 17.0 | ± | 8.1 | 17.3 | ± | 5.3 | 0.46 | |
| Serum Cr, mg/dL | 0.8 | ± | 0.3 | 0.8 | ± | 0.4 | 0.8 | ± | 0.3 | 0.69 | |
| Albumin, mg/dL | 4.4 | ± | 0.3 | 4.4 | ± | 0.2 | 4.3 | ± | 0.4 | 1.00 | |
| FPG, mg/dL | 104.6 | ± | 26.3 | 107.6 | ± | 34.2 | 102.1 | ± | 18.2 | 0.86 | |
| HbA1c, % | 6.2 | ± | 0.9 | 6.4 | ± | 1.3 | 6.1 | ± | 0.6 | 0.89 | |
| TC, mg/dL | 181.3 | ± | 34.9 | 177.4 | ± | 28.7 | 184.1 | ± | 39.3 | 0.72 | |
| HDL-C, mg/dL | 54.9 | ± | 13.1 | 52.8 | ± | 12.9 | 56.5 | ± | 13.4 | 0.37 | |
| LDL-C, mg/dL | 107.0 | ± | 30.7 | 104.7 | ± | 26.1 | 108.9 | ± | 34.7 | 0.88 | |
| TGs, mg/dL | 104.6 | ± | 24.9 | 110.6 | ± | 30.2 | 100.4 | ± | 20.3 | 0.44 | |
| Folate | 14.2 | ± | 8.0 | 13.0 | ± | 7.7 | 15.3 | ± | 8.3 | 0.33 | |
| Vitamin B12 | 857.5 | ± | 438.8 | 743.1 | ± | 406.1 | 966.2 | ± | 451.0 | 0.08 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
