Submitted:
06 July 2023
Posted:
07 July 2023
Read the latest preprint version here
Abstract
Keywords:
Introduction
- -
- Throughout the evolutionary process all vertebrates have possessed a myogenic heart with evident intrinsic activity, although there are exceptions in the fish that have more than one heart. This intrinsic activity of the heart has been demonstrated in the vertebrate precursors, tunicates and cephalochordates.
- -
- Blood flows from the heart to the head and there are also one-way valves, which open and close according to the direction of the blood flowing through them. The venous valves are considered a “passive” system.
- -
- The blood vessels show vasomotor activity, so that the changes in the degree of contraction of the smooth muscles alter the peripheral resistance, the variations in blood pressure and the storage of blood in the periphery.
- -
- Although with certain limitations, the cardiovascular system can be functionally considered as a closed system.
Adjustment of the heart rate to exercise in verebrates
Adjustment of the stroke volume to exercise in vertebrates
- -
- -
- Temperature. The action potential duration and Tmax decrease with an increase in temperature, that is Tmax decreases at high temperature as a result of a shorter action potential duration [44].
- -
- -
- Extracellular calcium and other inotropic agents. The gradient for Ca2+ through the sarcolemma increases when a rise in extracellular [Ca2+] occurs [45,46], so an increase of extracellular [Ca2+] in the range of 1-9mM triggers an increase in the Tmax of the cardiac muscle. Many other inotropic agents are known, but their relative importance in vivo is not always clearly defined. Negative inotropic effects can be produced with hypoxia, acidosis, acetylcholine and other molecules [47].
- -
- Homeometric regulation, described as the capacity of the cardiac muscle to maintain the blood flow independently of the development of pressure, in contrast to heterometric regulation (Starling’s Law). This factor is well documented in hearts of several classes of fish and may be one of the causes for the SV to be unaffected by alterations in vascular resistance in spite of the change that accompanies cardiac functioning [25].
Adjustment of mean arterial pressure (map) to exercise in vertebrates
- -
- Short-term regulation. The innervation of the heart is very varied [59]. In teleosts vagal innervation shows a higher tone at rest. The heart of amphibians has sympathetic and parasympathetic innervation both in caudata and anura. The activity of anura increases both HR and arterial pressure, which rises initially because of adrenergic effluents and are maintained by circulating catecholamines. Reptiles present wide variation in the levels of blood pressure attributable to the differences among species, to environmental conditions and to non-steady states derived from different causes. In spite of the high HR in relation to many other vertebrates, the heart of birds is subject to an important cholinergic (vagal) and adrenergic tone. Walking increases blood pressure in several types of birds, particularly at high intensities due to the increase in sympathetic tone and to a lesser extent to vagal inhibition [60].
- -
- Regulation of blood volume (medium and long-term regulation). Blood volume in vertebrates varies it hardly exceeds the 10% of body mass. It is supposed that all mechanisms that control blood volume reflect steady state conditions depending on the state of hydration, activity, hibernation and other factors. All the regulatory mechanisms of the vertebrates are summarized below:
- -
- The increase in efferent nervous activity can provoke renal vasoconstriction, which in turn considerably reduces renal blood flow. Renal regulation may be very important in amphibians, some fish and reptiles [62].
- -
- Endocrine factors, like arginine vasopressin, the renin-angiotensin system and the atrial natriuretic peptide. Arginine vasopressin (AVP) promotes the retention of fluid at the level of the kidneys, and its physiological importance for direct effects on blood pressure is secondary. AVP is found in the neurohypophysis of all non-mammal vertebrates. Neurohypophyseal peptides in reptiles and birds are similar to those of mammals [63]. The renin-angiotensin-aldosterone system (RAAS) is present in all vertebrates except cyclostomata and elasmobranchii, and it is one of the most important hormonal systems in the long-term modulation of renal function and hemodynamics in mammals [64,65]. The role of angiotensin II in blood pressure maintenance in fish is demonstrated after a fall in pressure after the administration of inhibitors of the angiotensin converting enzyme. Finally, the atrial natriuretic factor comprises a family of peptides synthesized in the auricular myocytes in response to the tension in the local wall (increase in intra auricular volume) and it is present in all vertebrates [66].
- -
- Factors derived from the endothelium. Numerous peptides produce vasoactive effects and are present in all classes of vertebrates [67].
- -
- Other factors. Different molecules with autocrine or paracrine effects (histamine, bradykinin, adenosine, nitric oxide) are present in the cells and affect the cardiovascular system of vertebrates [68].
Integrated response to exercise in vertebrates
Conclusions and Future Directions
References
- Poole: D.C.; Erickson, H.H. Highly athletic terrestrial mammals: horses and dogs. Compr Physiol 2011, 1, 1-37. https://doi.org/10.1002/cphy.c091001. [CrossRef]
- Hedrick, M.S.; Hancock, T.V.; Hillman, S.S. Metabolism at the Max: How Vertebrate Organisms Respond to Physical Activity. Compr Physiol 2015, 5, 1677-1703. https://doi.org/10.1002/cphy.c130032. [CrossRef]
- Wang, T.; Joyce, W.; Hicks, J.W. Similitude in the cardiorespiratory responses to exercise across vertebrates. Curr Opin Physiol 2019, 10, 137-145. https://doi.org/10.1016/j.cophys.2019.05.007. [CrossRef]
- Bowlin, M.S.; Bisson, I.A.; Shamoun-Baranes, J.; Reichard, J.D.; Sapir, N.; Marra, P.P.; Kunz, T.H.; Wilcove, D.S.; Hedenstrom, A.; Guglielmo, C.G.; et al. Grand challenges in migration biology. Integr Comp Biol 2010, 50, 261-279. https://doi.org/10.1093/icb/icq013. [CrossRef]
- Piersma, T. Why marathon migrants get away with high metabolic ceilings: towards an ecology of physiological restraint. J Exp Biol 2011, 214, 295-302. https://doi.org/10.1242/jeb.046748. [CrossRef]
- Morash, A.J.; Vanderveken, M.; McClelland, G.B. Muscle metabolic remodeling in response to endurance exercise in salmonids. Front Physiol 2014, 5, 452. https://doi.org/10.3389/fphys.2014.00452. [CrossRef]
- Burggren, W.W.; Farrell, A.P.; Lillywhite, H.B. Vertebrate cardiovascular systems. In Handbook of Physiology. Comparative physiology; Am. Physiol.Soc.: Bethesda MD, 1997; Volume 1, pp. 215-308.
- Lefevre, S.; Damsgaard, C.; Pascale, D.R.; Nilsson, G.E.; Stecyk, J.A. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis. J Exp Biol 2014, 217, 4387-4398. https://doi.org/10.1242/jeb.105023. [CrossRef]
- Hillman, S.S. Cardiac scope in amphibians: transition to terrestrial life. Canadian journal of zoology 1991, 69, 2010-2013. [CrossRef]
- Lewis, Z.R.; Hanken, J. Convergent evolutionary reduction of atrial septation in lungless salamanders. J Anat 2017, 230, 16-29. https://doi.org/10.1111/joa.12535. [CrossRef]
- Burggren, W.W. Central Cardiovascular Function in Amphibians: Qualitative Influences of Phylogeny, Ontogeny, and Season. In Mechanisms of Systemic Regulation. Advances in Comparative and Environmental Physiology, Heisler, N., Ed.; Springer-Verlag: Berlin Heidelberg 1995; Volume vol 21, pp. 175-197.
- Jensen, B.; Moorman, A.F.; Wang, T. Structure and function of the hearts of lizards and snakes. Biol Rev Camb Philos Soc 2014, 89, 302-336. https://doi.org/10.1111/brv.12056. [CrossRef]
- Burggren, W.; Filogonio, R.; Wang, T. Cardiovascular shunting in vertebrates: a practical integration of competing hypotheses. Biol Rev Camb Philos Soc 2020, 95, 449-471. https://doi.org/10.1111/brv.12572. [CrossRef]
- Gleeson, T.T.; Mitchell, G.S.; Bennett, A.F. Cardiovascular responses to graded activity in the lizards Varanus and Iguana. Am J Physiol 1980, 239, R174-179. https://doi.org/10.1152/ajpregu.1980.239.1.R174. [CrossRef]
- Leite, C.A.C.; Taylor, E.W.; Wang, T.; Abe, A.S.; De Andrade, D.O.V. Ablation of the ability to control the right-to-left cardiac shunt does not affect oxygen consumption, specific dynamic action or growth in rattlesnakes,<i>Crotalus durissus</i>. Journal of Experimental Biology 2013, 216, 1881-1889. https://doi.org/10.1242/jeb.083840. [CrossRef]
- Hicks, J.W. The physiological and evolutionary significance of cardiovascular shunting patterns in reptiles. News Physiol Sci 2002, 17, 241-245. https://doi.org/10.1152/nips.01397.2002. [CrossRef]
- Ishimatsu, A.; Hicks, J.W.; Heisler, N. Analysis of Cardiac Shunting in the Turtle <i>Trachemys</i> (<i>Pseudemys</i>) <i>Scripta</i>: Application of the Three Outflow Vessel Model. Journal of Experimental Biology 1996, 199, 2667-2677. https://doi.org/10.1242/jeb.199.12.2667. [CrossRef]
- Boutilier, R.G.; Shelton, G. Gas exchange, storage and transport in voluntarily diving Xenopus laevis. J Exp Biol 1986, 126, 133-155. https://doi.org/10.1242/jeb.126.1.133. [CrossRef]
- Wang, T.; Hedrick, M.S.; Ihmied, Y.M.; Taylor, E.W. Control and interaction of the cardiovascular and respiratory systems in anuran amphibians. Comp Biochem Physiol A Mol Integr Physiol 1999, 124, 393-406. https://doi.org/10.1016/s1095-6433(99)00131-2. [CrossRef]
- Burggren, W.W.; Johansen, K. Circulation and Respiration in Lungfishes (Dipnoi). J Morphol 1986, 217-236.
- Graham, J.B.; Lee, H.J. Breathing air in air: In what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition? Physiol Biochem Zool 2004, 77, 720-731, https://doi.org/10.1086/425184. [CrossRef]
- Randall, D.J. Cardio-respiratory modeling in fishes and the consequences of the evolution of airbreathing. Cardioscience 1994, 5, 167-171.
- Cook, A.C.; Tran, V.H.; Spicer, D.E.; Rob, J.M.H.; Sridharan, S.; Taylor, A.; Anderson, R.H.; Jensen, B. Sequential segmental analysis of the crocodilian heart. J Anat 2017, 231, 484-499. https://doi.org/10.1111/joa.12661. [CrossRef]
- Rowlatt, U. Comparative anatomy of the heart of mammals. Zoological Journal of the Linnean Society 1990, 98, 73-110. https://doi.org/10.1111/j.1096-3642.1990.tb01220.x. [CrossRef]
- Farrell, A.P. From Hagfish to Tuna: A Perspective on Cardiac Function in Fish. Physiological Zoology 1991, 64, 1137-1164.
- Farrell, A.P. Cardiac scope in lower vertebrates. Canadian Journal of Zoology 1991, 69, 1981-1984. [CrossRef]
- Hagberg, J.M.; Allen, W.K.; Seals, D.R.; Hurley, B.F.; Ehsani, A.A.; Holloszy, J.O. A hemodynamic comparison of young and older endurance athletes during exercise. J Appl Physiol (1985) 1985, 58, 2041-2046. https://doi.org/10.1152/jappl.1985.58.6.2041. [CrossRef]
- Farrell, A.P.; Davie, P.S.; Franklin, C.E.; Johansen, J.A.; Brill, R.W. Cardiac physiology in tunas. I. In vitro perfused heart preparations from yellowfin and skipjack tunas. Canadian Journal of Zoology 1992, 70, 1200-1210. [CrossRef]
- Noakes, T.D. Lord of running; Oxford University Press: Cape Town, 1992.
- Physick-Sheard, P.W. Cardiovascular response to exercise and training in the horse. Vet Clin North Am Equine Pract 1985, 1, 383-417. https://doi.org/10.1016/s0749-0739(17)30762-9. [CrossRef]
- Hillman, S.S.; Hancock, T.V.; Hedrick, M.S. A comparative meta-analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange. J Comp Physiol B 2013, 183, 167-179. https://doi.org/10.1007/s00360-012-0688-1. [CrossRef]
- Derman, K.D.; Noakes, T.D. Comparative Aspects of Exercise Physiology. In The athletic horse, Hodgson, D.R., Rose, R.J., Eds.; WB Saunders: Philadelphia, 1984; pp. 13-25.
- Ask, J.A. Comparative aspects of adrenergic receptors in the hearts of lower vertebrates. Comp Biochem Physiol A Comp Physiol 1983, 76, 543-552. https://doi.org/10.1016/0300-9629(83)90456-5. [CrossRef]
- Taylor, E.W.; Leite, C.A.; Sartori, M.R.; Wang, T.; Abe, A.S.; Crossley, D.A., 2nd. The phylogeny and ontogeny of autonomic control of the heart and cardiorespiratory interactions in vertebrates. J Exp Biol 2014, 217, 690-703. https://doi.org/10.1242/jeb.086199. [CrossRef]
- de Marneffe, M.; Jacobs, P.; Haardt, R.; Englert, M. Variations of normal sinus node function in relation to age: role of autonomic influence. Eur Heart J 1986, 7, 662-672. https://doi.org/10.1093/oxfordjournals.eurheartj.a062120.
- Matsui, K.; Sugano, S. Relation of intrinsic heart rate and autonomic nervous tone to resting heart rate in the young and the adult of various domestic animals. Nihon Juigaku Zasshi 1989, 51, 29-34. https://doi.org/10.1292/jvms1939.51.29. [CrossRef]
- Pfeifer, M.A.; Weinberg, C.R.; Cook, D.; Best, J.D.; Reenan, A.; Halter, J.B. Differential changes of autonomic nervous system function with age in man. Am J Med 1983, 75, 249-258. https://doi.org/10.1016/0002-9343(83)91201-9. [CrossRef]
- Zavorsky, G.S. Evidence and possible mechanisms of altered maximum heart rate with endurance training and tapering. Sports Med 2000, 29, 13-26. https://doi.org/10.2165/00007256-200029010-00002. [CrossRef]
- Betros, C.L.; McKeever, K.H.; Kearns, C.F.; Malinowski, K. Effects of ageing and training on maximal heart rate and VO2max. Equine Vet J Suppl 2002, 100-105. https://doi.org/10.1111/j.2042-3306.2002.tb05399.x. [CrossRef]
- Farrell, A.P. Circulation of body fluids. In Environmental and metabolic animal physiology, Prosser, C.L., Ed.; Wiley/Liss: New York, 1991; pp. 509-558.
- Thomas, D.P.; Fregin, G.F. Cardiorespiratory and metabolic responses to treadmill exercise in the horse. J Appl Physiol Respir Environ Exerc Physiol 1981, 50, 864-868. https://doi.org/10.1152/jappl.1981.50.4.864. [CrossRef]
- Farrell, A.P. A review of cardiac performance in the teleost heart: intrinsic and humoral regulation. Canadian Journal of Zoology 1984, 62, 523-536. [CrossRef]
- Farrell, A.P.; Jones, D.R. The Heart. In The Cardiovascular System, Hoar, W.S., Randall, D.J., Farrell, A.P., Eds.; Academic Press: San Diego, CA, 1992; pp. 1-88.
- Vornanen, M. Regulation of contractility of the fish (Carassius carassius L.) heart ventricle. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 1989, 94, 477-483. [CrossRef]
- Driedzic, W.R.; Gesser, H. Ca2+ protection from the negative inotropic effect of contraction frequency on teleost hearts. Journal of Comparative Physiology B 1985, 156, 135-142. [CrossRef]
- Driedzic, W.R.; Gesser, H. Differences in force-frequency relationships and calcium dependency between elasmobranch and teleost hearts. Journal of Experimental Biology 1988, 140, 227-241. [CrossRef]
- Gesser, H.; Poupa, O. Acidosis and cardiac muscle contractility: comparative aspects. Comp Biochem Physiol A Comp Physiol 1983, 76, 559-566. https://doi.org/10.1016/0300-9629(83)90458-9. [CrossRef]
- Franklin, C.E.; Davie, P.S. Myocardial power output of an isolated eel (Anguilla dieffenbachii) heart preparation in response to adrenaline. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 1992, 101, 293-298. [CrossRef]
- Lai, N.C.; Shabetai, R.; Graham, J.B.; Hoit, B.D.; Sunnerhagen, K.S.; Bhargava, V. Cardiac function of the leopard shark, Triakis semifasciata. Journal of Comparative Physiology B 1990, 160, 259-268. [CrossRef]
- Johansen, K.; Burggren, W.W. Venous return and cardiac filling in varanid lizards. J. Exp. Biol 1984, 113, 389-399. [CrossRef]
- Miller, R.R.; Fennell, W.H.; Young, J.B.; Palomo, A.R.; Quinones, M.A. Differential systemic arterial and venous actions and consequent cardiac effects of vasodilator drugs. Prog Cardiovasc Dis 1982, 24, 353-374. https://doi.org/10.1016/0033-0620(82)90019-6. [CrossRef]
- Tota, B.; Acierno, R.; Agnisola, C. Mechanical Performance of the Isolated and Perfused Heart of the Haemoglobinless Antarctic Icefish Chionodraco hamatus (Lonnberg): Effects of Loading Conditions and Temperature. 1991.
- Filogonio, R.; Dubansky, B.D.; Dubansky, B.H.; Wang, T.; Elsey, R.M.; Leite, C.A.C.; Crossley, D.A., 2nd. Arterial wall thickening normalizes arterial wall tension with growth in American alligators, Alligator mississippiensis. J Comp Physiol B 2021, 191, 553-562. https://doi.org/10.1007/s00360-021-01353-1. [CrossRef]
- Shelton, G.; Burggren, W. Cardiovascular dynamics of the chelonia during apnoea and lung ventilation. Journal of Experimental Biology 1976, 64, 323-343. [CrossRef]
- Goetz, R.H.; Warren, J.V.; Gauer, O.H.; Patterson, J.L., Jr.; Doyle, J.T.; Keen, E.N.; Mc, G.M. Circulation of the giraffe. Circ Res 1960, 8, 1049-1058. https://doi.org/10.1161/01.res.8.5.1049. [CrossRef]
- Poulsen, C.B.; Wang, T.; Assersen, K.; Iversen, N.K.; Damkjaer, M. Does mean arterial blood pressure scale with body mass in mammals? Effects of measurement of blood pressure. Acta Physiol (Oxf) 2018, 222, e13010. https://doi.org/10.1111/apha.13010. [CrossRef]
- Bishop, C.M. Heart mass and the maximum cardiac output of birds and mammals: implications for estimating the maximum aerobic power input of flying animals. Philos Trans R Soc Lond B Biol Sci 1997, 29, 3447-3456. [CrossRef]
- Evans, D.L. The cardiovascular system: anatomy, physiology, and adaptations to exercise and training. In The athletic horse, Hodgson, D.R., Rose, R.J., Eds.; WB Saunders: Philadelphia, 1994; pp. 129-144.
- Hirsch, E.F. The innervation of the human heart. IV. (1) The fiber connections of the nerves with the perimysial plexus (Gerlach-Hofmann); (2) The role of nerve tissues in the repair of infarcts. Arch Pathol 1963, 75, 378-401.
- Sturkie, P.D.; Poorvin, D.; Ossorio, N. Levels of epinephrine and norepinephrine in blood and tissues of duck, pigeon, turkey, and chicken. Proc Soc Exp Biol Med 1970, 135, 267-270. https://doi.org/10.3181/00379727-135-35034. [CrossRef]
- Segal, S.S. Integration of blood flow control to skeletal muscle: key role of feed arteries. Acta Physiol Scand 2000, 168, 511-518. https://doi.org/10.1046/j.1365-201x.2000.00703.x. [CrossRef]
- Dantzler, W.H. Comparative Physiology of the Vertebrate Kidney; Springer-Verlag: New York, 2016; p. 292.
- Pang, P.K.; Furspan, P.B.; Sawyer, W.H. Evolution of neurohypophyseal hormone actions in vertebrates. American Zoologist 1983, 23, 655-662.
- Fournier, D.; Luft, F.C.; Bader, M.; Ganten, D.; Andrade-Navarro, M.A. Emergence and evolution of the renin-angiotensin-aldosterone system. J Mol Med (Berl) 2012, 90, 495-508. https://doi.org/10.1007/s00109-012-0894-z. [CrossRef]
- Nishimura, H. Renin-angiotensin system in vertebrates: phylogenetic view of structure and function. Anat Sci Int 2017, 92, 215-247. https://doi.org/10.1007/s12565-016-0372-8. [CrossRef]
- Cerra, M.C. Cardiac distribution of the binding sites for natriuretic peptides in vertebrates. Cardioscience 1994, 5, 215-224.
- Kipryushina, Y.O.; Yakovlev, K.V.; Odintsova, N.A. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates. Cytokine Growth Factor Rev 2015, 26, 687-695. https://doi.org/10.1016/j.cytogfr.2015.04.001. [CrossRef]
- Donald, J.A.; Forgan, L.G.; Cameron, M.S. The evolution of nitric oxide signalling in vertebrate blood vessels. J Comp Physiol B 2015, 185, 153-171. https://doi.org/10.1007/s00360-014-0877-1. [CrossRef]
- Duff, D.W.; Olson, K.R. Response of rainbow trout to constant-pressure and constant-volume hemorrhage. Am J Physiol 1989, 257, R1307-1314. https://doi.org/10.1152/ajpregu.1989.257.6.R1307. [CrossRef]
- Hillman, S.S.; Withers, P.C. The hemodynamic consequences of hemorrhage and hypernatremia in two amphibians. J Comp Physiol B 1988, 157, 807-812. https://doi.org/10.1007/BF00691012. [CrossRef]
- Smits, A.W.; Kozubowski, M.M. Partitioning of body fluids and cardiovascular responses to circulatory hypovolaemia in the turtle, Pseudemys scripta elegans. Journal of experimental biology 1985, 116, 237-250. [CrossRef]
- Smits, A.W.; Lillywhite, H.B. Maintenance of blood volume in snakes: transcapillary shifts of extravascular fluids during acute hemorrhage. Journal of Comparative Physiology B 1985, 155, 305-310. [CrossRef]
- Djojosugito, A.M.; Folkow, B.; Kovach, A.G. The mechanisms behind the rapid blood volume restoration after hemorrhage in birds. Acta Physiol Scand 1968, 74, 114-122. https://doi.org/10.1111/j.1748-1716.1968.tb04220.x. [CrossRef]
- Schindler, S.L.; Gildersleeve, R.P. Comparison of recovery from hemorrhage in birds and mammals. Comp Biochem Physiol A Comp Physiol 1987, 87, 533-542. https://doi.org/10.1016/0300-9629(87)90356-2. [CrossRef]
- Di Prampero, P.E. Metabolic and circulatory limitations to VO2 max at the whole animal level. Journal of Experimental Biology 1985, 115, 319-331. [CrossRef]
- Butler, P.J.; West, N.H.; Jones, D.R. Respiratory and cardiovascular responses of the pigeon to sustained, level flight in a wind-tunnel. Journal of Experimental Biology 1977, 71, 7-26. [CrossRef]
- Korner, P.I. Integrative neural cardiovascular control. Physiol Rev 1971, 51, 312-367. https://doi.org/10.1152/physrev.1971.51.2.312. [CrossRef]
- Axelsson, M.; Davison, W.; Forster, M.E.; Farrell, A.P. Cardiovascular responses of the red-blooded Antarctic fishes Pagothenia bernacchii and P. borchgrevinki. Journal of Experimental Biology 1992, 167, 179-201. [CrossRef]
- Jones, J.H.; Longworth, K.E.; Lindholm, A.; Conley, K.E.; Karas, R.H.; Kayar, S.R.; Taylor, C.R. Oxygen transport during exercise in large mammals. I. Adaptive variation in oxygen demand. J Appl Physiol (1985) 1989, 67, 862-870. https://doi.org/10.1152/jappl.1989.67.2.862. [CrossRef]
- Brill, R.W.; Bushnell, P.G. Metabolic and cardiac scope of high energy demand teleosts, the tunas. Canadian Journal of Zoology 1991, 69, 2002-2009. [CrossRef]
- Kolok, A.S.; Spooner, M.R.; Farrell, A.P. The effect of exercise on the cardiac output and blood flow distribution of the largescale sucker Catostomus macrocheilus. Journal of Experimental Biology 1993, 183, 301-321. [CrossRef]
- Randall, D.J.; Daxboeck, C. Cardiovascular changes in the rainbow trout (Salmo gairdneri Richardson) during exercise. Canadian Journal of Zoology 1982, 60, 1135-1140. [CrossRef]
- Thorarensen, H.; McLean, E.; Donaldson, E.M.; Farrell, A.P. The blood vasculature of the gastrointestinal tract in chinook, Oncorhynchus tshawytscha (Walbaum), and coho, O. kisutch (Walbaum), salmon. Journal of fish biology 1991, 38, 525-531. [CrossRef]
- Axelsson, M.; Fritsche, R. Effects of exercise, hypoxia and feeding on the gastrointestinal blood flow in the Atlantic cod Gadus morhua. Journal of Experimental Biology 1991, 158, 181-198. [CrossRef]
- Canty, A.A.; Farrell, A.P. Intrinsic regulation of flow in an isolated tail preparation of the ocean pout (Macrozoarces americanus). Canadian journal of zoology, 1985, 63, 2013-2020. [CrossRef]
- Kimmel, P.B. Adrenergic receptors and the regulation of vascular resistance in bullfrog tadpoles (Rana catesbeiana). J Comp Physiol B 1992, 162, 455-462. https://doi.org/10.1007/BF00258969. [CrossRef]
- Butler, P.J.; Milsom, W.K.; Woakes, A.J. Respiratory, cardiovascular and metabolic adjustments during steady state swimming in the green turtle,Chelonia mydas. Journal of Comparative Physiology B 1984, 154, 167-174. [CrossRef]
- Hillman, S.S.; Withers, P.C.; Palioca, W.B.; Ruben, J.A. Cardiovascular consequences of hypercalcemia during activity in two species of amphibian. Journal of Experimental Zoology 1987, 242, 303-308. [CrossRef]
- Withers, P.C.; Hillman, S.S.; Simmons, L.A.; Zygmunt, A.C. Cardiovascular adjustments to enforced activity in the anuran amphibian, Bufo marinus. Comparative Biochemistry and Physiology Part A: Physiology 1988, 89, 45-49. [CrossRef]
- West, N.H.; Butler, P.J.; Bevan, R.M. Pulmonary blood flow at rest and during swimming in the green turtle, Chelonia mydas. Physiological zoology 1992, 65, 287-310.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
