Submitted:
03 July 2023
Posted:
05 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature review
3. Methods
4. Results
4.1. The role of Chemical Process Systems Engineering
4.2. Process industries
4.2.1. Chemical industry
4.2.2. Pharmaceutical industry
4.2.3. Cement industry
4.3. Biotechnology
4.4. Metals production
4.4.1. Iron and steel
4.4.2. Aluminum
- Power decarbonization is critical: all smelters will need to switch to low carbon power by 2035, equating to approx. 1000 TW h of low-carbon electricity demand.
- Power decarbonization is necessary but not sufficient to decarbonize the sector, new technology for low carbon anodes and new refining technologies need to be commercialized by 2030.
- Recycled aluminum plays a critical role, expanding from 33 % of supply in 2020 to over 50 % by 2050.
- Mobilizing approximately 1 TUSD of investment over the next 30 years will be needed to deliver the transition for the primary aluminum sector, with over 70 % of that required for supporting infrastructure, primarily for power supply.
5. Conclusions and outlook
- Sustainability and the circular economy, e.g., bio-based plastics, battery material recycling, improving efficiency of wind turbines.
- Digitalization, e.g., artificial intelligence (AI) to drive efficiency, sensors and internet of things (IoT) to transform logistics, collaboration with tech giants key to remain ahead of the curve, Machined to perfection.
- Innovation and accelerated globalization, e.g., novel manufacturing process, making composites affordable, advanced materials for better insulation.
- Sustainability and innovation (integrating innovation and sustainability to move beyond abatement)
- Portfolio transformation (near-term portfolio action positions the industry for long-term transformation)
- Supply chains (rearchitecting to balance costs, carbon footprint, and resilience)
- Digital (emerging technologies drive value chain improvements and sustainability).
- emission pricing policy instruments
- standards and regulations
- complementary policies to facilitate the reallocation of capital, labour and innovation towards low-carbon activities and to offset the adverse distributional effects of reducing emissions.
Author Contributions
Funding
Conflicts of Interest
References
- European Environment Agency. Global and European temperatures. Available online: https://www.eea.europa.eu/ims/global-and-european-temperatures (accessed on 29 May 2023).
- World Meteorological Organization. Global Annual to Decadal Climate Update, Target years: 2023 and 2023–2027. Available online: https://library.wmo.int/doc_num.php?explnum_id=11629 (accessed on 29 May 2023).
- Jones, N. When will global warming actually hit the landmark 1.5 °C limit? Nature 2023, 618, 20. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency, IEA. CO2 Emissions in 2022. Available online: https://iea.blob.core.windows.net/assets/3c8fa115-35c4-4474-b237-1b00424c8844/CO2Emissionsin2022.pdf (accessed on 29 May 2023).
- Ellen MacArthur Foundation. To reduce CO2 emissions, the materials industry needs to transition to a circular economy. Available online: https://medium.com/circulatenews/to-reduce-co2-emissions-the-materials-industry-needs-to-transition-to-a-circular-economy-520d83620283 (accessed on 29 May 2023).
- CEFIC. Facts and Figures 2023 of the European Chemical Industry. Available online: https://cefic.org/app/uploads/2023/03/2023-Facts-and-Figures.pdf (accessed on 29 May 2023).
- OECD. Industrial Biotechnology and Climate Change: Opportunities and Challenges. Available online: https://www.oecd.org/sti/emerging-tech/49024032.pdf (accessed on 3 June 2023).
- Center for Global Commons at the University of Tokyo & Systemiq. Planet Positive Chemicals. Available online: https://cgc.ifi.u-tokyo.ac.jp/research/chemistry-industry/planet-positive-chemicals.pdf (accessed on 29 May 2023).
- European Commission. Transition Pathway for the Chemical Industry. Available online: https://single-market-economy.ec.europa.eu/sectors/chemicals/transition-pathway_en (accessed on 29 May 2023).
- Marzi, T.; Knappertsbusch, V.; Grevé, A.; Deerberg, G.; Doetsch, C.; Weidner, E. Resources of a New Carbon Economy. Chemie Ingenieur Technik 2018, 90, 1374–83. [Google Scholar] [CrossRef]
- Nikas, A.; Xexakis, G.; Koasidis, K.; Fernández, J.A.; Arto, I.; Calzadilla, A.; Domenech, T.; Gambhir, A.; Giljum, S.; Eguino, M.G.; Herbst, A.; Ivanova, O.; Sluisveld, M.A.E.; et al. Coupling Circularity Performance and Climate Action: From Disciplinary Silos to Transdisciplinary Modelling Science. Sustainable Production and Consumption 2022, 30, 269–77. [Google Scholar] [CrossRef]
- Bowker, M.; DeBeer, S.; Dummer, N.F.; Hutchings, G.J.; Scheffler, M.; Schüth, F.; Taylor, S.H.; Tüysüz, H. Advancing Critical Chemical Processes for a Sustainable Future: Challenges for Industry and the Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT). Angewandte Chemie International Edition 2022, 61. [Google Scholar] [CrossRef]
- Sadok, R.H.; Maherzi, W.; Benzerzour, M.; Lord, R.; Torrance, K.; Zambon, A.; Abriak, N.E. Mechanical Properties and Microstructure of Low Carbon Binders Manufactured from Calcined Canal Sediments and Ground Granulated Blast Furnace Slag (GGBS). Sustainability 2021, 13, 9057. [Google Scholar] [CrossRef]
- Zibunas, C.; Meys, R.; Kätelhön, A.; Bardow, A. Cost-Optimal Pathways towards Net-Zero Chemicals and Plastics Based on a Circular Carbon Economy. Computers & Chemical Engineering 2022, 162, 107798. [Google Scholar] [CrossRef]
- Silva, C.; Moniz, P.; Oliveira, A.; Vercelli, S.; Reis, A.; Silva, T.L. Cascading Crypthecodinium Cohnii Biorefinery: Global Warming Potential and Techno-Economic Assessment. Energies 2022, 15, 3784. [Google Scholar] [CrossRef]
- Roberts, M.; Allen, S.; Clarke, J.; Searle, J.; Coley, D. Understanding the Global Warming Potential of Circular Design Strategies: Life Cycle Assessment of a Design-for-Disassembly Building. Sustainable Production and Consumption 2023, 37, 331–343. [Google Scholar] [CrossRef]
- Staddon, J.; Smit, J.; Skoufa, Z.; and Watson, D. Chemical Networks: A Methodology to Rapidly Assess the Environmental Impact of Chemical Processes : Applying Graph Theory Principles to Chemical Industry Data Enables Early-Stage Decision Making for Optimum Decarbonisation Solutions. Johnson Matthey Technology Review 2022, 66, 466–78. [Google Scholar] [CrossRef]
- Saggar, A.; Nigam, B. Maximising Net Zero in Energy-Intensive Industries: An Overview of AI Applications for Greenhouse Gas Reduction. Journal of Climate Change 2023, 9, 13–23. [Google Scholar] [CrossRef]
- Toniato, A.; Schilter, O.; Laino, T. The Role of AI in Driving the Sustainability of the Chemical Industry. CHIMIA 2023, 77, 144. [Google Scholar] [CrossRef]
- NoParast, M.; Hematian, M.; Ashrafian, A.; Amiri, M.J.T.; AzariJafari, H. Development of a Non-Dominated Sorting Genetic Algorithm for Implementing Circular Economy Strategies in the Concrete Industry. Sustainable Production and Consumption 2021, 27, 933–946. [Google Scholar] [CrossRef]
- Datta, S.S.; Battiato, I.; Fernø, M.A.; Juanes, R.; Parsa, S.; Prigiobbe, V.; Carreras, E.S.; Song, W.; Biswal, S.L.; Sinton, D. Lab on a Chip for a Low-Carbon Future. Lab on a Chip 2023, 23, 1358–1375. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Ma, J.; Shimizu, K.; Furukawa, S. High-Entropy Intermetallics on Ceria as Efficient Catalysts for the Oxidative Dehydrogenation of Propane Using CO2. Nature Communications 2022, 13, 5065. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Forrest, B.; Martin, S.; Fetvedt, J.; McGroddy, M.; Freed, D. Integration and Optimization of Coal Gasification Systems With a Near-Zero Emissions Supercritical Carbon Dioxide Power Cycle. Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Xing, F.; Furukawa, S. Metallic Catalysts for Oxidative Dehydrogenation of Propane Using CO2. Chemistry – A European Journal 2023, 29. [Google Scholar] [CrossRef] [PubMed]
- Layritz, L.S.; Dolganova, I.; Finkbeiner, M.; Luderer, G.; Penteado, A.T.; Ueckerdt, F.; Repke, J.U. The Potential of Direct Steam Cracker Electrification and Carbon Capture & Utilization via Oxidative Coupling of Methane as Decarbonization Strategies for Ethylene Production. Applied Energy 2021, 296, 117049. [Google Scholar] [CrossRef]
- Lanjewar, B.A.; Chippagiri, R.; Dakwale, V.A.; Ralegaonkar, R.V. Application of Alkali-Activated Sustainable Materials: A Step towards Net Zero Binder. Energies 2023, 16, 969. [Google Scholar] [CrossRef]
- Pedraza, J.; Zimmermann, A.; Tobon, J.; Schomäcker, R.; Rojas, N. On the Road to Net Zero-Emission Cement: Integrated Assessment of Mineral Carbonation of Cement Kiln Dust. Chemical Engineering Journal 2021, 408, 127346. [Google Scholar] [CrossRef]
- Aneja, A.; Sharma, R.L.; Singh, H. Mechanical and Durability Properties of Biochar Concrete. Materials Today: Proceedings 2022, 65, 3724–3730. [Google Scholar] [CrossRef]
- Parvulescu, A.N.; Maurer, S. Toward Sustainability in Zeolite Manufacturing: An Industry Perspective. Frontiers in Chemistry 2022, 10, 1050363. [Google Scholar] [CrossRef]
- Santawaja, P.; Kudo, S.; Mori, A.; Tahara, A; Asano, S. ; Hayashi, J. Sustainable Iron-Making Using Oxalic Acid: The Concept, A Brief Review of Key Reactions, and An Experimental Demonstration of the Iron-Making Process. ACS Sustainable Chemistry & Engineering 2020, 8, 13292–13301. [Google Scholar] [CrossRef]
- European Commission. EU climate targets: how to decarbonise the steel industry. Available online: https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/eu-climate-targets-how-decarbonise-steel-industry-2022-06-15_en (accessed on 29 May 2023).
- Gingerich, D.B.; Sun, X.; Behrer, A.P.; Azevedo, I.L.; Mauter, M.S. Spatially Resolved Air-Water Emissions Tradeoffs Improve Regulatory Impact Analyses for Electricity Generation. Proceedings of the National Academy of Sciences 2017, 114, 1862–1867. [Google Scholar] [CrossRef]
- Zhao, F.; Fan, Y.; Zhang, S; Eichhammer, W. ; Haendel, M.; Yu, S. Exploring Pathways to Deep De-Carbonization and the Associated Environmental Impact in China’s Ammonia Industry. Environmental Research Letters 2022, 17, 045029. [Google Scholar] [CrossRef]
- Zhao, X.; Huning, A.J.; Burek, J.; Guo, F.; Kropaczek, D.J.; Pointer, W.D. The Pursuit of Net-Positive Sustainability for Industrial Decarbonization with Hybrid Energy Systems. Journal of Cleaner Production 2022, 362, 132349. [Google Scholar] [CrossRef]
- Huo, J.; Wang, Z.; Oberschelp, C.; Gosálbez, G.G.; Hellweg, S. Net-Zero Transition of the Global Chemical Industry with CO2-Feedstock by 2050: Feasible yet Challenging. Green Chemistry 2023, 25, 415–30. [Google Scholar] [CrossRef]
- Yu, X.; Catanescu, C.O.; Bird, R.E.; Satagopan, S.; Baum, Z.J.; Diaz, L.M.L.; Zhou, Q.A. Trends in Research and Development for CO 2 Capture and Sequestration. ACS Omega 2023, 8, 11643–11664. [Google Scholar] [CrossRef]
- Gabrielli, P.; Gazzani, M.; Mazzotti, M. The Role of Carbon Capture and Utilization, Carbon Capture and Storage, and Biomass to Enable a Net-Zero-CO 2 Emissions Chemical Industry. Industrial & Engineering Chemistry Research 2020, 59, 7033–7045. [Google Scholar] [CrossRef]
- Podder, J.; Patra, B.R.; Pattnaik, F.; Nanda, S.; Dalai, A.K. A Review of Carbon Capture and Valorization Technologies. Energies 2023, 16, 2589. [Google Scholar] [CrossRef]
- Dongare, S.; Singh, N.; Bhunia, H. Nitrogen-Doped Graphene Supported Copper Nanoparticles for Electrochemical Reduction of CO2. Journal of CO2 Utilization 2021, 44, 101382. [Google Scholar] [CrossRef]
- Joel, A.S.; Isa, Y.M. Novelty in Fossil Fuel Carbon Abatement Technologies in the 21st Century: Post-combustion Carbon Capture. Journal of Chemical Technology & Biotechnology 2023, 98, 838–855. [Google Scholar] [CrossRef]
- Ren, J.; Yu, A.; Peng, P.; Lefler, M.; Li, F.; Licht, S. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons. Accounts of Chemical Research 2019, 52, 3177–3187. [Google Scholar] [CrossRef] [PubMed]
- Quang, D.V.; Milani, D.; Zahra, M.A. A Review of Potential Routes to Zero and Negative Emission Technologies via the Integration of Renewable Energies with CO2 Capture Processes. International Journal of Greenhouse Gas Control 2023, 124, 103862. [Google Scholar] [CrossRef]
- Lee, R.P.; Wolfersdorf, C.; Keller, F.; Meyer, B. Towards a Closed Carbon Cycle and Achieving a Circular Economy for Carbonaceous Resources - Net Zero Emissions, Resource Efficiency and Resource Conservation through Coupling of the Energy, Chemical and Recycling Sectors. Oil Gas European Magazine 2017, 43, 76–77. [Google Scholar] [CrossRef]
- Saleh, H.M.; Hassan, A.I. Green Conversion of Carbon Dioxide and Sustainable Fuel Synthesis. Fire 2023, 6, 128. [Google Scholar] [CrossRef]
- Rusdan, N.A.; Timmiati, S.N.; Isahak, W.N.R.W.; Yaakob, Z.; Lim, K.L.; Khaidar, D. Recent Application of Core-Shell Nanostructured Catalysts for CO2 Thermocatalytic Conversion Processes. Nanomaterials 2022, 12, 3877. [Google Scholar] [CrossRef]
- Alia, S.; Ding, D.; McDaniel, A.; Toma, F.M.; Dinh, H.N. Chalkboard 2 - How to Make Clean Hydrogen. The Electrochemical Society Interface 2021, 30, 49–56. [Google Scholar] [CrossRef]
- OpenAI. ChatGPT. Available online: https://chat.openai.com/ (accessed on 20 May 2023).
- United Nations. For a livable climate: Net-zero commitments must be backed by credible action. Available online: https://www.un.org/en/climatechange/net-zero-coalition (accessed on 4 June 2023).
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, A Green Deal Industrial Plan for the Net-Zero Age. Available online: https://commission.europa.eu/system/files/2023-02/COM_2023_62_2_EN_ACT_A%20Green%20Deal%20Industrial%20Plan%20for%20the%20Net-Zero%20Age.
- European Commission. Transition Pathway for the Chemical Industry. Available online: https://ec.europa.eu/docsroom/documents/54595/attachments/1/translations/en/renditions/native.
- McKinsey & Company. Decarbonizing the Chemical Industry. Available online: https://www.mckinsey.com/industries/chemicals/our-insights/decarbonizing-the-chemical-industry#/ (accessed on 8 June 2023).
- Circle Economy. The Circularity Gap Report 2023. Available online: https://www.circularity-gap.world/2023 (accessed on 4 June 2023).
- Fiorentino, G.; Zucaro, A.; Ulgiati, S. Towards an energy efficient chemistry. Switching from fossil to bio-based products in a life cycle perspective. Energy 2019, 170, 720–729. [Google Scholar] [CrossRef]
- Maltais, A.; Karltorp, K.; Tekle, H. Policy priorities for mobilizing investment in Swedish green industrial transitions. Stockholm Environment Institute 2022. [Google Scholar] [CrossRef]
- Zirngast, K.; Kravanja, Z.; Pintarič, Z.N. The influence of variable CO2 emission tax rate on flexible chemical process synthesis. Processes 2021, 9, 1720. [Google Scholar] [CrossRef]
- Hao, Z.; Barecka, M.H.; Lapkin, A.A. Accelerating net zero from the perspective of optimizing a carbon capture and utilization system. Energy & Environmental Science 2022, 15, 2139–2153. [Google Scholar] [CrossRef]
- Kasaš, M.; Kravanja, Z.; Pintarič, Z. N. Achieving Profitably, Operationally, and Environmentally Compromise Flow-Sheet Designs by a Single-Criterion Optimization. AIChE Journal 2011, 58, 2131–2141. [Google Scholar] [CrossRef]
- Foo, D.C.Y.; Tan, R.R. A Review on Process Integration Techniques for Carbon Emissions and Environmental Footprint Problems. Process Safety and Environmental Protection 2016, 103, 291–307. [Google Scholar] [CrossRef]
- Manan, Z.A.; Mohd Nawi, W.N.R.; Wan Alwi, S.R.; Klemeš, J.J. Advances in Process Integration research for CO2 emission reduction – A review. Journal of Cleaner Production 2017, 167, 1–13. [Google Scholar] [CrossRef]
- Migo-Sumagang, M.V.; Aviso, K.B.; Foo, D.C.Y.; Short, M.; Nair, P.N.S.B.; Tan, R.R. Optimization and decision support models for deploying negative emissions technologies. PLOS Sustainability and Transformation 2023. [Google Scholar] [CrossRef]
- Zolbin, M.A.; Tahouni, N.; Panjeshahi, M.H. Total site integration considering wind /solar energy with supply/demand variation. Energy 2022, 252, 123928. [Google Scholar] [CrossRef]
- Drofenik, J.; Urbancl, D.; Goričanec, D.; Kravanja, Z.; Novak-Pintarič, Z. Food Waste to Energy through Innovative Coupling of CHP and Heat Pump. Energies 2023, 16, 3344. [Google Scholar] [CrossRef]
- International Energy Agency, IEA. Chemicals. Available online: https://www.iea.org/reports/chemicals (accessed on 29 May 2023).
- International Energy Agency, IEA. Chemicals – Fuels & Technologies. Available online: https://www.iea.org/fuels-and-technologies/chemicals (accessed on 29 May 2023).
- Cosmos Weekly. How can the global chemical industry get to net zero? Available online:. Available online: https://cosmosmagazine.com/earth/chemical-industry-emissions/ (accessed on 29 May 2023).
- Bhavsar, A.; Hingar, D.; Ostwal, S.; Thakkar, I.; Jadeja, S.; Shah, M. The Current Scope and Stand of Carbon Capture Storage and Utilization ∼ A Comprehensive Review. Case Studies in Chemical and Environmental Engineering 2023, 8, 100368. [Google Scholar] [CrossRef]
- Langie, K.M.G.; Tak, K.; Kim, C.; Lee, H.W.; Park, K.; Kim, D.; Jung, W.; Lee, C.W.; Oh, H.-S.; Lee, D.K.; et al. Toward Economical Application of Carbon Capture and Utilization Technology with Near-Zero Carbon Emission. Nat. Commun. 2022, 13, 7482. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, P.; Benson, S.M.; Pilorgé, H.; Psarras, P.; Wilcox, J. An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Front. Clim. 2019, 1, 9. [Google Scholar] [CrossRef]
- Sullivan, I.; Goryachev, A.; Digdaya, I.A.; Li, X.; Atwater, H.A.; Vermaas, D.A.; Xiang, C. Coupling Electrochemical CO2 Conversion with CO2 Capture. Nat. Catal. 2021, 4, 952–958. [Google Scholar] [CrossRef]
- Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angew. Chem. Int. Ed. 2021, 60, 19572–19590. [Google Scholar] [CrossRef]
- Ra, E.C.; Kim, K.Y.; Kim, E.H.; Lee, H.; An, K.; Lee, J.S. Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives. ACS Catal. 2020, 10, 11318–11345. [Google Scholar] [CrossRef]
- Fu, Z.; Yang, Q.; Liu, Z.; Chen, F.; Yao, F.; Xie, T.; Zhong, Y.; Wang, D.; Li, J.; Li, X.; et al. Photocatalytic Conversion of Carbon Dioxide: From Products to Design the Catalysts. Journal of CO2 Utilization 2019, 34, 63–73. [Google Scholar] [CrossRef]
- Eryazici, I.; Ramesh, N.; Villa, C. Electrification of the Chemical Industry—Materials Innovations for a Lower Carbon Future. MRS Bulletin 2021, 46, 1197–1204. [Google Scholar] [CrossRef]
- Van Geem, K.M.; Weckhuysen, B.M. Toward an E-Chemistree: Materials for Electrification of the Chemical Industry. MRS Bulletin 2021, 46, 1187–1196. [Google Scholar] [CrossRef]
- Fakayode, O.A.; Wahia, H.; Zhang, L.; Zhou, C.; Ma, H. State-of-the-Art Co-Pyrolysis of Lignocellulosic and Macroalgae Biomass Feedstocks for Improved Bio-Oil Production- A Review. Fuel 2023, 332, 126071. [Google Scholar] [CrossRef]
- Klaas, L.; Guban, D.; Roeb, M.; Sattler, C. Recent Progress towards Solar Energy Integration into Low-Pressure Green Ammonia Production Technologies. International Journal of Hydrogen Energy 2021, 46, 25121–25136. [Google Scholar] [CrossRef]
- Potrč, S.; Čuček, L.; Martin, M.; Kravanja, Z. Sustainable Renewable Energy Supply Networks Optimization – The Gradual Transition to a Renewable Energy System within the European Union by 2050. Renewable and Sustainable Energy Reviews 2021, 146, 111186. [Google Scholar] [CrossRef]
- Taqvi, S.; Almansoori, A.; Elkamel, A. Optimal Renewable Energy Integration into the Process Industry Using Multi-Energy Hub Approach with Economic and Environmental Considerations: Refinery-Wide Case Study. Computers & Chemical Engineering 2021, 151, 107345. [Google Scholar] [CrossRef]
- Baeyens, J.; Zhang, H.; Nie, J.; Appels, L.; Dewil, R.; Ansart, R.; Deng, Y. Reviewing the Potential of Bio-Hydrogen Production by Fermentation. Renewable and Sustainable Energy Reviews 2020, 131, 110023. [Google Scholar] [CrossRef]
- Ubando, A.T.; Chen, W.-H.; Hurt, D.A.; Conversion, A.; Rajendran, S.; Lin, S.-L. Biohydrogen in a Circular Bioeconomy: A Critical Review. Bioresource Technology 2022, 366, 128168. [Google Scholar] [CrossRef] [PubMed]
- Mishra, K.; Singh Siwal, S.; Kumar Saini, A.; Thakur, V.K. Recent Update on Gasification and Pyrolysis Processes of Lignocellulosic and Algal Biomass for Hydrogen Production. Fuel 2023, 332, 126169. [Google Scholar] [CrossRef]
- Ehlers, J.C.; Feidenhans’l, A.A.; Therkildsen, K.T.; Larrazábal, G.O. Affordable Green Hydrogen from Alkaline Water Electrolysis: Key Research Needs from an Industrial Perspective. ACS Energy Lett. 2023, 8, 1502–1509. [Google Scholar] [CrossRef]
- Henkensmeier, D.; Najibah, M.; Harms, C.; Žitka, J.; Hnát, J.; Bouzek, K. Overview: State-of-the Art Commercial Membranes for Anion Exchange Membrane Water Electrolysis. Journal of Electrochemical Energy Conversion and Storage 2021, 18, 024001. [Google Scholar] [CrossRef]
- Min, G.; Choi, S.; Hong, J. A Review of Solid Oxide Steam-Electrolysis Cell Systems: Thermodynamics and Thermal Integration. Applied Energy 2022, 328, 120145. [Google Scholar] [CrossRef]
- Mahapatra, M.; Pradhan, A.K. Bioethanol Production from Agricultural Wastes with the Aid of Nanotechnology. In Bio-Nano Interface; Arakha, M., Pradhan, A.K., Jha, S., Eds.; Springer Singapore: Singapore, 2022; pp. 329–337. ISBN 9789811625152. [Google Scholar]
- Lee, J.; Chen, W.-H.; Park, Y.-K. Recent Achievements in Platform Chemical Production from Food Waste. Bioresource Technology 2022, 366, 128204. [Google Scholar] [CrossRef]
- Ewing, T.A.; Nouse, N.; Van Lint, M.; Van Haveren, J.; Hugenholtz, J.; Van Es, D.S. Fermentation for the Production of Biobased Chemicals in a Circular Economy: A Perspective for the Period 2022–2050. Green Chem. 2022, 24, 6373–6405. [Google Scholar] [CrossRef]
- Gul, B.; Khan, S.; Ahmad, I. Extraction of Phytochemicals from Date Palm (Phoenix Dactylifera L.) Seeds by Enzymatic Hydrolysis. Food Processing Preservation 2022, 46. [Google Scholar] [CrossRef]
- Rahimi, Z.; Anand, A.; Gautam, S. An Overview on Thermochemical Conversion and Potential Evaluation of Biofuels Derived from Agricultural Wastes. Energy Nexus 2022, 7, 100125. [Google Scholar] [CrossRef]
- Bellabarba, R.; Johnston, P.; Moss, S.; Sievers, C.; Subramaniam, B.; Tway, C.; Wang, Z.; Zhu, H. Net Zero Transition: Possible Implications for Catalysis. ACS Catal. 2023, 7917–7928. [Google Scholar] [CrossRef]
- Burkart, M.D.; Hazari, N.; Tway, C.L.; Zeitler, E.L. Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catal. 2019, 9, 7937–7956. [Google Scholar] [CrossRef]
- Chit, V.; Tan, L.S.; Kiew, P.L.; Tsuji, T.; Funazukuri, T.; Lock, S.S.M. Advancing Process Intensification with High-Frequency Ultrasound: A Mini-Review of Applications in Biofuel Production and Beyond. Processes 2023, 11, 1236. [Google Scholar] [CrossRef]
- Cholewa, T.; Semmel, M.; Mantei, F.; Güttel, R.; Salem, O. Process Intensification Strategies for Power-to-X Technologies. ChemEngineering 2022, 6, 13. [Google Scholar] [CrossRef]
- Bogataj, M.; Klemeš, J.J.; Kravanja, Z. Fifty Years of Heat Integration. In Handbook of Process Integration (PI), 2nd ed.; Klemeš, J., Ed.; Elsevier: Oxford, UK, 2022; pp. 73–99. ISBN 978-0-12-823850-9. [Google Scholar]
- Aurisano, N.; Weber, R.; Fantke, P. Enabling a Circular Economy for Chemicals in Plastics. Current Opinion in Green and Sustainable Chemistry 2021, 31, 100513. [Google Scholar] [CrossRef]
- Bogataj, M.; Kravanja, Z.; Nemet, A. Recovery of N-Butanol from a Complex Five-Component Reactive Azeotropic Mixture. Processes 2022, 10, 364. [Google Scholar] [CrossRef]
- He, C.; Zhang, C.; Bian, T.; Jiao, K.; Su, W.; Wu, K.-J.; Su, A. A Review on Artificial Intelligence Enabled Design, Synthesis, and Process Optimization of Chemical Products for Industry 4.0. Processes 2023, 11, 330. [Google Scholar] [CrossRef]
- Al-Anzi, F.S.; Lababidi, H.M.S.; Al-Sharrah, G.; Al-Radwan, S.A.; Seo, H.J. Plant Health Index as an Anomaly Detection Tool for Oil Refinery Processes. Sci. Rep. 2022, 12, 14477. [Google Scholar] [CrossRef]
- Gao, Z.; Geng, Y.; Wu, R.; Chen, W.; Wu, F.; Tian, X. Analysis of Energy-Related CO2 Emissions in China’s Pharmaceutical Industry and Its Driving Forces. Journal of Cleaner Production 2019, 223, 94–108. [Google Scholar] [CrossRef]
- Belkhir, L.; Elmeligi, A. Carbon Footprint of the Global Pharmaceutical Industry and Relative Impact of Its Major Players. Journal of Cleaner Production 2019, 214, 185–194. [Google Scholar] [CrossRef]
- De Souza E Silva, A.P.; Pires, F.C.S.; Ferreira, M.C.R.; Da Silva, I.Q.; Aires, G.C.M.; Ribeiro, T.M.; Menezes, E.G.O.; Da Silva Martins, L.H.; De Carvalho, R.N. Case Studies of Green Solvents in the Pharmaceutical Industry. In Green Sustainable Process for Chemical and Environmental Engineering and Science, 1st ed.; Inamuddin, Boddula, R., Ahamed, M.I., Asiri, A.M., Eds.; Elsevier: Oxford, UK, 2021; pp. 151–159. ISBN 978-0-12-821885-3. [Google Scholar]
- Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J. Green Chemistry in the Synthesis of Pharmaceuticals. Chem. Rev. 2022, 122, 3637–3710. [Google Scholar] [CrossRef]
- Mishra, M.; Sharma, M.; Dubey, R.; Kumari, P.; Ranjan, V.; Pandey, J. Green Synthesis Interventions of Pharmaceutical Industries for Sustainable Development. Current Research in Green and Sustainable Chemistry 2021, 4, 100174. [Google Scholar] [CrossRef]
- Conway, S.L.; Rosas, J.G.; Overton, P.; Tugby, N.; Cryan, P.; Witulski, F.; Hurley, S.; Wareham, L.; Tantuccio, A.; Ramasamy, M.; et al. Implementation of a Fully Integrated Continuous Manufacturing Line for Direct Compression and Coating at a Commercial Pharmaceutical Facility - Part 1: Operational Considerations and Control Strategy. International Journal of Pharmaceutics 2023, 122820. [Google Scholar] [CrossRef]
- Kerr, M.S.; Cole, K.P. Sustainability Case Studies on the Use of Continuous Manufacturing in Pharmaceutical Production. Current Research in Green and Sustainable Chemistry 2022, 5, 100279. [Google Scholar] [CrossRef]
- Testa, C.J.; Shvedova, K.; Hu, C.; Wu, W.; Born, S.C.; Takizawa, B.; Mascia, S. Heterogeneous Crystallization as a Process Intensification Technology in an Integrated Continuous Manufacturing Process for Pharmaceuticals. Org. Process Res. Dev. 2021, 25, 225–238. [Google Scholar] [CrossRef]
- Xiouras, C.; Kuijpers, K.; Fanfair, D.; Dorbec, M.; Gielen, B. Enabling Technologies for Process Intensification in Pharmaceutical Research and Manufacturing. Current Opinion in Chemical Engineering 2023, 41, 100920. [Google Scholar] [CrossRef]
- Mgharbel, M.; Halawy, L.; Milane, A.; Zeaiter, J.; Saad, W. Pyrolysis of Pharmaceuticals as a Novel Means of Disposal and Material Recovery from Waste for a Circular Economy. Journal of Analytical and Applied Pyrolysis 2023, 172, 106014. [Google Scholar] [CrossRef]
- EFPIA. White Paper on Circular Economy. Available online: https://www.efpia.eu/media/554663/circular-economy.pdf (accessed on 25 May 2023).
- Sabat, K.C.; Bhattacharyya, S.S.; Krishnamoorthy, B. Circular Economy in Pharmaceutical Industry through the Lens of Stimulus Organism Response Theory. European Business Review 2022, 34, 936–964. [Google Scholar] [CrossRef]
- Jellali, S.; Khiari, B.; Al-Harrasi, M.; Charabi, Y.; Al-Sabahi, J.; Al-Abri, M.; Usman, M.; Al-Raeesi, A.; Jeguirim, M. Industrial Sludge Conversion into Biochar and Reuse in the Context of Circular Economy: Impact of Pre-Modification Processes on Pharmaceuticals Removal from Aqueous Solutions. Sustainable Chemistry and Pharmacy 2023, 33, 101114. [Google Scholar] [CrossRef]
- Suhandi, V.; Chen, P.-S. Closed-Loop Supply Chain Inventory Model in the Pharmaceutical Industry toward a Circular Economy. Journal of Cleaner Production 2023, 383, 135474. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Anil, A.G.; Kapoor, D.; Khasnabis, S.; Shekar, S.; Pavithra, N.; Samuel, J.; Subramanian, S.; Singh, J.; et al. Adsorption and Detoxification of Pharmaceutical Compounds from Wastewater Using Nanomaterials: A Review on Mechanism, Kinetics, Valorization and Circular Economy. Journal of Environmental Management 2021, 300, 113569. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.; Rabal, O.; Diaz Gonzalez, C. Artificial Intelligence, Machine Learning, and Deep Learning in Real-Life Drug Design Cases. In Artificial Intelligence in Drug Design; Heifetz, A., Ed.; Methods in Molecular Biology; Springer US: New York, NY, 2022; ISBN 978-1-07-161786-1. [Google Scholar]
- Prajapati, B.G.; Philip, A.; Faiyazuddin, M.; Prajapati, D.; Prajapati, J.; Paliwal, H.; Saikia, S. Impact of AI on drug delivery and pharmacokinetics: The present scenario and future prospects. In A Handbook of Artificial Intelligence in Drug Delivery, 1st ed.; Philip, A., Shahiwala, A., Rashid, M., Faiyazuddin, M., Eds.; Elsevier: New York, NY, USA, 2023; pp. 443–465. ISBN 978-0-323-89925-3. [Google Scholar]
- Jukič, M.; Janežič, D.; Bren, U. Ensemble Docking Coupled to Linear Interaction Energy Calculations for Identification of Coronavirus Main Protease (3CLpro) Non-Covalent Small-Molecule Inhibitors. Molecules 2020, 25, 5808. [Google Scholar] [CrossRef] [PubMed]
- Arden, N.S.; Fisher, A.C.; Tyner, K.; Yu, L.X.; Lee, S.L.; Kopcha, M. Industry 4.0 for Pharmaceutical Manufacturing: Preparing for the Smart Factories of the Future. International Journal of Pharmaceutics 2021, 602, 120554. [Google Scholar] [CrossRef]
- Kim, Y.; Atukeren, E.; Lee, Y. A New Digital Value Chain Model with PLC in Biopharmaceutical Industry: The Implication for Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity 2022, 8, 63. [Google Scholar] [CrossRef]
- McKinsey & Company. Decarbonizing the Built Environment: Takeaways from COP26. Available online: https://www.mckinsey.com/industries/engineering-construction-and-building-materials/our-insights/decarbonizing-the-built-environment-takeaways-from-cop26 (accessed on 9 June 2023).
- Liu, Z.; Ciais, P.; Deng, Z.; Davis, S.J.; Zheng, B.; Wang, Y.; Cui, D.; Zhu, B.; Dou, X.; Ke, P.; et al. Carbon Monitor, a near-Real-Time Daily Dataset of Global CO2 Emission from Fossil Fuel and Cement Production. Scientific Data 2020, 7, 392. [Google Scholar] [CrossRef] [PubMed]
- McKinsey & Company. Decarbonizing Cement and Concrete Value Chains: Takeaways from Davos. Available online: https://www.mckinsey.com/industries/engineering-construction-and-building-materials/our-insights/decarbonizing-cement-and-concrete-value-chains-takeaways-from-davos#/ (accessed on 9 June 2023).
- Da Silva Magalhães, M.; Cezar, B.F.; Lustosa, P.R. Influence of Brazilian Fly Ash Fineness on the Cementing Efficiency Factor, Compressive Strength and Young’s Modulus of Concrete. Developments in the Built Environment 2023, 14, 100147. [Google Scholar] [CrossRef]
- Navarrete, I.; Vargas, F.; Martinez, P.; Paul, A.; Lopez, M. Flue Gas Desulfurization (FGD) Fly Ash as a Sustainable, Safe Alternative for Cement-Based Materials. Journal of Cleaner Production 2021, 283, 124646. [Google Scholar] [CrossRef]
- Gao, T.; Dai, T.; Shen, L.; Jiang, L. Benefits of Using Steel Slag in Cement Clinker Production for Environmental Conservation and Economic Revenue Generation. Journal of Cleaner Production 2021, 282, 124538. [Google Scholar] [CrossRef]
- Li, X.; Dengler, J.; Hesse, C. Reducing Clinker Factor in Limestone Calcined Clay-Slag Cement Using C-S-H Seeding – A Way towards Sustainable Binder. Cement and Concrete Research 2023, 168, 107151. [Google Scholar] [CrossRef]
- Ghalehnovi, M.; Roshan, N.; Hakak, E.; Shamsabadi, E.A.; De Brito, J. Effect of Red Mud (Bauxite Residue) as Cement Replacement on the Properties of Self-Compacting Concrete Incorporating Various Fillers. Journal of Cleaner Production 2019, 240, 118213. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Sun, H.; Li, L. Evaluation of Blends Bauxite-Calcination-Method Red Mud with Other Industrial Wastes as a Cementitious Material: Properties and Hydration Characteristics. Journal of Hazardous Materials 2011, 185, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Kahawalage, A.C.; Melaaen, M.C.; Tokheim, L.-A. Opportunities and Challenges of Using SRF as an Alternative Fuel in the Cement Industry. Cleaner Waste Systems 2023, 4, 100072. [Google Scholar] [CrossRef]
- Mokrzycki, E.; Uliasz- Bocheńczyk, A. Alternative Fuels for the Cement Industry. Applied Energy 2003, 74, 95–100. [Google Scholar] [CrossRef]
- Coolbrook. RotoDynamic Heater to replace fossil fuels in industrial process heating. Available online: https://coolbrook.com/technology/rdh/ (accessed on 9 June 2023).
- Cemnet. The Electrified Commercial Cement Kiln. Available online: https://www.cemnet.com/News/story/174030/the-electrified-commercial-cement-kiln.html (accessed on 9 June 2023).
- Nhuchhen, D.R.; Sit, S.P.; Layzell, D.B. Decarbonization of Cement Production in a Hydrogen Economy. Applied Energy 2022, 317, 119180. [Google Scholar] [CrossRef]
- Vattenfall. Vattenfall and Cementa Take the next Step towards a Climate Neutral Cement. Available online: https://group.vattenfall.com/press-and-media/pressreleases/2019/vattenfall-and-cementa-take-the-next-step-towards-a-climate-neutral-cement (accessed on 9 June 2023).
- Bacatelo, M.; Capucha, F.; Ferrão, P.; Margarido, F. Selection of a CO2 Capture Technology for the Cement Industry: An Integrated TEA and LCA Methodological Framework. Journal of CO2 Utilization 2023, 68, 102375. [Google Scholar] [CrossRef]
- Tanzer, S.E.; Blok, K.; Ramírez, A.R. Scoping Cost and Abatement Metrics for Biomass with Carbon Capture and Storage — the Example of BioCCS in Cement. International Journal of Greenhouse Gas Control 2023, 125, 103864. [Google Scholar] [CrossRef]
- Ferrario, D.; Stendardo, S.; Verda, V.; Lanzini, A. Solar-Driven Calcium Looping System for Carbon Capture in Cement Plants: Process Modelling and Energy Analysis. J. Clean. Prod. 2023, 394, 136367. [Google Scholar] [CrossRef]
- Strunge, T.; Renforth, P.; Van Der Spek, M. Towards a Business Case for CO2 Mineralisation in the Cement Industry. Commun. Earth. Environ. 2022, 3, 59. [Google Scholar] [CrossRef]
- Dixit, A.; Du, H.; Pang, S.D. Carbon Capture in Ultra-High Performance Concrete Using Pressurized CO2 Curing. Construction and Building Materials 2021, 288, 123076. [Google Scholar] [CrossRef]
- Bang, J.K.; Foller, A.; Buttazzoni, M. Industrial biotechnology: More than green fuel in a dirty economy? Exploring the transformational potential of industrial biotechnology on the way to a green economy; WWF Denmark: Copenhagen, Denmark, 2009; p. 20. [Google Scholar]
- International Aluminium. Making Net-Zero Aluminium Possible. Available online: https://international-aluminium.org/resource/mpp-and-iai-release-ambitious-decarbonization-aluminium-sector/ (accessed on 4 June 2023).
- Megatrends. Available online: https://www.google.com/search?client=firefox-b-d&q=megatrends (accessed on 24 June 2023).
- Market Research Blog. 3 Megatrends in the Chemical Industry. Available online: https://blog.marketresearch.com/3-megatrends-in-the-chemical-industry (accessed on 25 June 2023).
- Deloitte. 2023 chemical industry outlook. Available online: https://www2.deloitte.com/content/dam/Deloitte/us/Documents/energy-resources/us-2023-outlook-chemical.pdf (accessed on 27 June 2023).
- European Commission. Proposal for a regulation of the European Parliament and of the Council on establishing a framework of measures for strengthening Europe’s net-zero technology products manufacturing ecosystem (Net Zero Industry Act). Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:6448c360-c4dd-11ed-a05c-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 27 June 2023).
- D’Arcangelo, F.M.; Levin, I.; Pagani, A.; Pisu, M.; Johansson, Å.; A Framework to Decarbonize the Economy. OECD, Economic Policy Paper No. 31, 2022. Available online: https://www.oecd-ilibrary.org/docserver/4e4d973d-en.pdf?expires=1688074583&id=id&accname=guest&checksum=2DC88FA312145ECA9CC65E2FE00131EC (accessed on 28 June 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
