Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Review on Type of Sensors and Detection Method of Anti-Collision System of Unmanned Aerial Vehicle

Version 1 : Received: 28 June 2023 / Approved: 3 July 2023 / Online: 4 July 2023 (02:59:26 CEST)

A peer-reviewed article of this Preprint also exists.

Chandran, N.K.; Sultan, M.T.H.; Łukaszewicz, A.; Shahar, F.S.; Holovatyy, A.; Giernacki, W. Review on Type of Sensors and Detection Method of Anti-Collision System of Unmanned Aerial Vehicle. Sensors 2023, 23, 6810. Chandran, N.K.; Sultan, M.T.H.; Łukaszewicz, A.; Shahar, F.S.; Holovatyy, A.; Giernacki, W. Review on Type of Sensors and Detection Method of Anti-Collision System of Unmanned Aerial Vehicle. Sensors 2023, 23, 6810.

Abstract

Unmanned aerial vehicle (UAV) usage is increasing drastically worldwide as UAVs are used in various industries for many applications, such as inspection, logistics, agriculture, and many more. This is because performing a task using UAV makes the job more efficient and reduces the workload needed. However, for a UAV to be operated manually or autonomously, the UAV must be equipped with proper safety features. An anti-collision system is one of the most crucial and fundamental safety features that UAVs must be equipped with. The anti-collision system allows the UAV to maintain a safe distance from any obstacles. The anti-collision technologies are of crucial relevance to assure the survival and safety of UAVs. Anti-collision of UAVs can be varied in the aspect of the use of sensors and the system’s working principle. This article provides a comprehensive overview of anti-collision technologies for UAVs. It also presents drone safety laws and regulations that prevent a collision at the policy level. The process of anti-collision technologies is studied from three aspects: Obstacle detection, collision prediction, and collision avoidance. A detailed overview and comparison of the methods of each element and an analysis of their advantages and disadvantages have been provided. In addition, the future trends of UAV anti-collision technologies from the viewpoint of fast obstacle detection and wireless networking are presented.

Keywords

anti-collision methods; detection system; sensors; unmanned aerial vehicle; UAV

Subject

Engineering, Aerospace Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.