Submitted:
29 June 2023
Posted:
04 July 2023
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Occurrence data
2.2. Climatic data
2.3. Environmental characterization of the occurrence sites
2.4. Selection of environmental variables
2.5. Eco-geography of D. composita: Determination of climatic adaptation and ecological descriptors
2.6. Ecological niche modeling
3. Results
3.1. Statistical analysis and environmental variables selection
3.2. Eco-geography of D. composita
3.3. Modeling the potential distribution of Dioscorea composita
3.4. Impact of climate change on the potential distribution of D. composita
4. Discussion
5. Conclusions
References
- Couto, R.S.; Martins, A.C.; Bolson, M.; Lopez, R.C.; Smidt, E.C.; and Braga, J.M.A. Time calibrated tree of Dioscorea (Dioscoreaceae) indicates four origins of yams in the Neotropics since the Eocene. Botanical Journal of the Linnean Society, 2018, 188, 144–160. [Google Scholar] [CrossRef]
- Martin, F.W.; Ortiz, S. New chromosome numbers in some Dioscorea species. Cytologia 1966, 31, 105–107. [Google Scholar] [CrossRef]
- Álvarez, Q.V. , Caso, B.L., Aliphat, F.M. Galmiche TÁ. Plantas medicinales con propiedades frías y calientes en la cultura Zoque de Ayapa. Tabasco, México. Boletín Latinoamericano y del Caribe de plantas medicinales y aromáticas. 2017, 16, 428–454. [Google Scholar]
- Zhang, S.; Fan, M.; Ye, G.; Zhang, H.; Xie, J. Biorefinery of Dioscorea composita Hemsl with ferric chloride for saponins conversion to diosgenin and recycling the waste to biomethane. Industrial Crops and Products. 2019, 135, 122–129. [Google Scholar] [CrossRef]
- Wei, M.; Bai, Y.; Ao, M.; Jin, W.; Yu, P.; Zhu, M.; Yu, L. Novel method utilizing microbial treatment for cleaner production of diosgenin from Dioscorea zingiberensis CH Wright (DZW). Bioresource technology. 2013, 146, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Román-Cortés, N. R. , García-Mateos, M. D. R., Castillo-González, A. M., Sahagún-Castellanos, J., & Jiménez-Arellanes, M. A. Características nutricionales y nutracéuticas de hortalizas de uso ancestral en México. Revista fitotecnia mexicana. 2018, 41, 245–253. [Google Scholar] [CrossRef]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen (Para adaptarlo a las condiciones de la República Mexicana). 5ª. Edición Instituto de Geografía UNAM-Enriqueta García. Ciudad de México. 2004, pp.90. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1.
- Bolaños, G.B. Biopolíticas del cambio climático para Centroamérica. Trace (México, DF). 2018a, 74, 135–158. [Google Scholar] [CrossRef]
- Ruiz-Corral, J.A.; Medina-García, G.; Flores-López, H.E. , Ramírez-Díaz, J.L., De la Cruz-Larios, L.; Villalpando-Ibarra, J.F.; Ruiz-Álvarez, O. Impacto del cambio climático sobre la estación de crecimiento en el estado de Jalisco, México. Revista Mexicana Ciencias Agrícolas . 2016; 13, 2627–2638. Available online: http://www.scielo.org.mx/scielo.php?pid=S200709342016000902627&script=sci_arttext.
- Lobato, S.R.; Altamirano, C.M.A. Detección de la tendencia local del cambio de la temperatura en México. Tecnología y Ciencias del Agua. 2017, 8, 101–116. [Google Scholar] [CrossRef]
- Rodríguez, M.V.M; Medina, G.G.; Díaz, P.G.; Ruiz, C.J.A.; Estrada, A.J.E.; Mauricio, R.J.E. ¿Por qué México es un país altamente vulnerable al cambio climático? Revista Mexicana Ciencias Agrícolas. 2021, 25, 45–57. [Google Scholar] [CrossRef]
- Mora, C.; Caldwell, I.R.; Caldwell, J.M.; Fisher, M.R.; Brandon, M.G.; Running, S.W. Suitable days for plant growth disappear under projected climate change: potential human and biotic vulnerability. PloS one Biology. 2015, 587. [Google Scholar] [CrossRef]
- Ruiz-Corral, J.A.; Medina-García, G.; García-Romero, G. Sistema de información agroclimática para México-Centroamérica. Revista Mexicana Cienciencas. Agrícolas. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Barrera-Sánchez, C.F.; Ruiz-Corral, J.A.; Zarazúa, V.P.; Lépiz, I.R.; González, E.D.R. Cambio climático y distribución potencial de frijol lima en Mesoamérica y Aridoamérica. Revista Mexicana de Ciencias Agrícolas. 2020, 11, 1361–1375. [Google Scholar] [CrossRef]
- Kong, F.; Tang, L.; He, H.; Yang, F.; Tao, J.; Wang, W. Assessing the impact of climate change on the distribution of Osmanthus fragrans using Maxent. Environmental Science and Pollution Research. 2021, 28, 34655–34663. [Google Scholar] [CrossRef]
- Sánchez-González, J.D.J.; Ruiz, C.J.A.; García, G.M.; Ojeda, G.R.; Larios, L.D.L.C.; Holland, J.B.; García, R.G.E. Ecogeography of teosinte . PLoS One. 2018, 13, e0192676. [Google Scholar] [CrossRef]
- Eastman, J.R. Idrisi Selva Manual. Clark Labs, Clark University. Worcester, MA, USA. 2012, 322 p.
- Bellouin, N.; Boucher, O.; Haywood, J.; Johnson, C.; Jones, A.; Rae, J.; Woodward, S. Improved representation of aerosols for HadGEM2. Hadley Centre Technical Note 73, Met Office Hadley Centre. 2007. Available online: https://www.google.com/search?q=Improved+representation+of+aerosols+for+HadGEM2.+Hadley+Centre+Technical+Note+73%2C+Met+Office+Hadley+Centre.+Exeter&rlz=1C1ALOY_esMX969MX973&oq=Improved+representation+of+aerosols+for+HadGEM2.+Hadley+Centre+Technical+Note+73%2C+Met++Office+Hadley+Centre.+Exeter&aqs=chrome..69i57.1981j0j15&sourceid=chrome&ie=UTF-8.
- 19. Instituto de Ecología (INE). México cuarta comunicación nacional ante la convención marco de las Naciones Unidas sobre cambio climático. Secretaría de Medio Ambiente y Recursos Naturales, (SEMARNAT). D. F México. 2009, 274 p. Available online: https://www.gob.mx/cms/uploads/attachment/file/666958/cuarta_Comunicacion.pdf.
- Conde, C.; Estrada, F.; Martinez, B.; Sánchez, O.; Gay, C. Regional climate change scenarios for México. Atmósfera. 2011, 24, 125–140. Available online: http://www.scielo.org.mx/pdf/atm/v24n1/v24n1a9.pdf.
- Zuza, E.J.; Maseyk, K.; Bhagwat, S.A.; De Sousa, K.; Emmott, A.; Rawes, W.; Araya, Y.N. . Climate suitability predictions for the cultivation of macadamia (Macadamia integrifolia) in Malawi using climate change scenarios. PloS one. 2021, 16, e0257007. [Google Scholar] [CrossRef] [PubMed]
- Environmental Systems Research Institute (ESRI). ArcGIS Desktop: Release 10. Environmental Systems Research Institute. Redlands, CA, USA. 2010, 15 p. Available at. http://earthobservations.org/about_geo.shtml.
- Newbold, T. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Progress in Physical Geography. 2010, 34, 3–22. [Google Scholar] [CrossRef]
- Boria, R.A.; Olson, L. , Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- del Valle, M.J.; Guerra, B.W. La multicolinealidad en modelos de regresión lineal múltiple. Revista Ciencias Técnicas Agropecuarias. 2012, 21(4), 80–83. Available online: http://scielo.sld.cu/pdf/rcta/v21n4/rcta13412.pdf.
- Core, T.R. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Austria. 2021. Available at. https://www.R-project.org/.
- Jayasinghe, S.L.; Kumar, L. Modeling the climate suitability of tea [Camellia sinensis (L.) O. Kuntze] in Sri Lanka in response to current and future climate change scenarios. Agricultural and Forest Meteorology. 2019, 272, 102–117. [Google Scholar] [CrossRef]
- Cobos, M.E.; Peterson, A.T.; Osorio, O.L.; Jiménez, G.D. An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecological Informatics. 2019, 53, 100983. [Google Scholar] [CrossRef]
- Peterson, A.T. , Cobos, M.E., Jiménez, G.D. Major challenges for correlational ecological niche model projections to future climate conditions. Annals of the New York Academy of Sciences. 2018, 1429, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; DeWalt, R.E.; Robinson, J.L.; Tweddale, T.; Hinz, L.; Pessino, M. Using Maxent to model the historic distributions of stonefly species in Illinois streams: The effects of regularization and threshold selections. Ecological Modelling. 2013, 259, 30–39. [Google Scholar] [CrossRef]
- Flores, T.M.; Ortiz, E. ; Villaseñor. J.L. Modelos de nicho ecológico como herramienta para estimar la distribución de comunidades vegetales. Revista Mexicana de Biodiversidad 90. 2220. [Google Scholar]
- Goettsch, B.; Urquiza, H.T.; Koleff, P. Acevedo, G.F. Extinction risk of Mesoamerican crop wild relatives. Plants, People, Planet. 2021, 3, 775–795. [Google Scholar] [CrossRef]
- Syfert, M.M.; Smith, M.J.; Coomes, D.A. The Effects of Sampling Bias and Model Complexity on the Predictive Performance of MaxEnt Species Distribution Models. PLoS one. 2013, 8, e55158. [Google Scholar] [CrossRef]
- Bowles, A. M. , Williamson, C. J., Williams, T. A., Lenton, T. M., & Donoghue, P. C. The origin and early evolution of plants. Trends in Plant Science. 2022, 28, 312–329. [Google Scholar] [CrossRef]
- Purseglove, J.W. Tropical crops: Monocotyledons. Longman Scientific and Technical. New York, NY, USA; 1985.
- Villers, R.L.; Trejo, V.I. El cambio climático y la vegetación en México. México: Una Visión Hacia El Siglo XXI El Cambio Climático En México, Universidad Nacional Autónoma de México, México. D.F. 2000, 57-66. Available at. https://www.uv.mx/personal/tcarmona/files/2010/08/Villers-y-Trejo-.pdf.
- Shen, L.; Xu, J.; Luo, L.; Hu, H.; Meng, X.; Li, X.; Chen, S. Predicting the potential global distribution of diosgenin-contained Dioscorea species. Chinese medicine. 2018, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Kipling, R.P.; Topp, C.F.; Bannink, A.; Bartley, D.J.; Blanco, P.I.; Cortignani. R.; Eory, V. To what extent is climate change adaptation a novel challenge for agricultural modellers? Environmental Modelling & Software. 2019, 120, 104492. [Google Scholar]
- Téllez, V.O.; Ramírez, R.R.O. Las dioscóreas (Dioscoreaceae) del Estado de Morelos, México. Anales del Instituto de Biología serie Botánica. 1992, 63-001. Available at. https://www.redalyc.org/pdf/400/40063104.pdf.
- Saikia, B.; Rawat, J.S; Tag, H.; Das, A.K. An investigation on the taxonomy and ecology of Dioscorea in Arunachal Pradesh, India. Journal of Frontline Research. 2011, 01, 44–53. Available online: https://d1wqtxts1xzle7.cloudfront.net/31930407/Dioscorea_paper_B_saikia-with-cover-page-v2.pdf?
- Rodríguez, W. Botánica, domesticación y fisiología del cultivo de ñame (Dioscorea alata). Agronomía Mesoamericana. 2000, 11, 133–152. Available online: https://www.redalyc.org/pdf/437/ 43711221.pdf. [CrossRef]
- González, V.M.E. El ñame (Dioscorea spp.). Características, usos y valor medicinal. Aspectos de importancia en el desarrollo de su cultivo. Cultivos Tropicales. 2012, 33, 05–15. Available online: http://scielo.sld.cu/scielo.php?pid=S0258-59362012000400001&script=sci_arttext&tlng=en.
- Coursey, D.G. Yams: Dioscorea spp. In: J. Smartt & N. Simmonds, Evolution of Crop Plants. Wiley 2nd Edition. London. 1976, pp.70-74. Available at. https://agris.fao.org/agrissearch/search.do?recordID=US201303063121.
- Puga, B.E. Manejo agronómico del cultivo de ñame. Guía técnica. 2 ed. MIDA. Panamá; 1995.
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen (Para adaptarlo a las condiciones de la República Mexicana). 5ª. Edición Instituto de Geografía UNAM-Enriqueta García. Ciudad de México, México. 2004, 90 p. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1.
- Onwueme, IC. Sett weight effects on time of tuber formation, and on tuber yield characteristics, in water yam (Dioscorea alata L.). Journal Agricultural Science. 1978, 91, 317–319. [Google Scholar] [CrossRef]
- Ruiz-Corral, J.A.; Medina, G.G.; González, A.I.J.; Flores, L.H.E.; Ramírez, O.G.; Ortiz, T.C.; Byerly, M.K.F.; Martínez, P.A.R.A. Requerimientos agroecológicos de cultivos. Libro Técnico Núm. 3. 2ª Ed. INIFAP-Prometeo Editores. Guadalajara, Jalisco, México. 2013, pp.564 Available at. https://www.researchgate.net/publication/343047223_REQUERIMIENTOS_AGROECOLOGICOS_DE_CULTIVOS_2da_Edicion.
- FAO. ECOCROP Database. Food and Agriculture Organization of the United Nations. Rome, Italy.2019.
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Reynoso, S.R.; Pérez, H.M.J.; López, B.W.; Hernández, R.J.; Muñoz, F.H.J.; Cob, U.J.V.; Reynoso, S.M.D. El nicho ecológico como herramienta para predecir áreas potenciales de dos especies. Revista Mexicana de Ciencias Forestales. 2018, 9, 47–68. [Google Scholar] [CrossRef]
- Navarro, G.M.A.; Jove, C.C.A.; Ignacio, A.J.M. Modelamiento de nichos ecológicos de flora amenazada para escenarios de cambio climático en el departamento de Tacna-Perú. Colombia Forestal. 2020, 23, 51–67. [Google Scholar] [CrossRef]
- Khalil., T.; Asad, S.A.; Khubaib, N.; Baig, A.; Atif, S.; Umar, M.; Baig, S. Climate change and potential distribution of potato (Solanum tuberosum) crop cultivation in Pakistan using Maxent. AIMS Agriculture and Food. 2021, 6, 663–676. [Google Scholar] [CrossRef]
- Sork, V.; Davis, F.; Westfall. ; R.; Flints, A.; Ikegami, M.; Wang, H.; Grivet, D.D. Gene movements and genetic association with regional gradients in California valley oak (Quercus lobata Née) in the face of climate change. Molecular Ecology. 2010, 19, 3806–3823. [Google Scholar] [CrossRef]
- Ovando, H.N.; Tun, J.; Mendoza, G.G.; Parra, T.V. Efecto del cambio climático en la distribución de especies clave en la vegetación de duna costera en la península de Yucatán. México. Revista Mexicana de Biodiversidad 90 2019. [Google Scholar]
- Srivastava, A.K.; Gaiser, T.; Paeth, H.; Ewert, F. The impact of climate change on Yam (Dioscorea alata) yield in the savanna zone of West Africa. Agriculture, Ecosystems & Environment. 2012, 153, 57–64. [Google Scholar]
- Du, Z.X.; Wu, J. Meng, X.X.; Li, J.H.; Huang, L.F. Predicting the global potential distribution of four endangered Panax species in middle-and low-latitude regions of China by the geographic information system for global medicinal plants (GMPGIS). Molecules. 2017, 22, 10–1630. [Google Scholar] [CrossRef]
- Munar, A.M.; Carlosama, A.R.; España, J.L.M. Potenciales áreas cultivables de pasifloras en una región tropical considerando escenarios de cambio climático. Revista de Investigación Agraria y Ambiental. 2022, 13, 109–129. [Google Scholar] [CrossRef]
- Louthan, A.M.; Morris, W. Climate change impacts on population growth across a species’ range differ due to nonlinear responses of populations to climate and variation in rates of climate change. PloS one. 2021, 16, e0247290. [Google Scholar] [CrossRef]





| Institution | Accessions | |
|---|---|---|
| Universidad Nacional Autónoma de México (Instituto de Biología) | 179 | |
| Instituto Nacional de Ecología y Cambio Climático | 131 | |
| Instituto Nacional de Estadística, Geografía e Informática (Dep. Botánica) | 3 | |
| Universidad Autónoma de Veracruz (Centro de Investigaciones Tropicales) | 1 | |
| Universidad Autónoma de Veracruz (Instituto de Investigaciones Biológicas) | 10 | |
| Colegio de la Frontera Sur (Unidad Tapachula) | 5 | |
| Universidad Autónoma de Chiapas | 5 | |
| Universidad Autónoma de Puebla | 4 | |
| Universidad Juárez Autónoma de Tabasco | 5 | |
| Universidad Autónoma Benito Juárez de Oaxaca | 4 | |
| Universidad Autónoma de Guerrero | 8 | |
| JSTOR Plant Science and the Global Plants Initiative | 3 | |
| Trópicos.org | 1 | |
| Red de Herbarios del Noroeste de México. | 16 | |
| Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Herbario Digital) | 7 | |
| Global Biodiversity Information Facility (GBIF) | 26 | |
| Total | 408 | |
| Variable | Description | Temporal scale |
|---|---|---|
| BIO01 | (Annual mean temperature) | Annual |
| BIO05 | (Maximum temperature of the warmest month) | Month |
| BIO06 | (Minimum temperature of the coldest month) | Month |
| BIO07 | Temperature annual range | Annual |
| BIO08 | (Mean temperature of the wettest quarter) | Quarter |
| BIO09 | (Mean temperature of the driest quarter) | Quarter |
| BIO10 | (Mean temperature of the warmest quarter) | Quarter |
| BIO11 | (Mean temperature of the coldest quarter) | Quarter |
| BIO12 | Annual precipitation | Annual |
| BIO13 | Precipitation of the wettest month | Month |
| BIO14 | Precipitation of the driest month | Month |
| BIO16 | Precipitation of the wettest quarter | Quarter |
| BIO17 | Precipitation of the driest quarter | Quarter |
| BIO18 | Precipitation of the warmest quarter | Quarter |
| BIO19 | Precipitation of the coldest quarter | Quarter |
| N-AMT | November-April mean temperature | Seasonal |
| M-OMT | May-October mean temperature | Seasonal |
| M-OXT | May-October maximum temperature | Seasonal |
| N-AXT | November-April maximum temperature | Seasonal |
| AXT | Annual maximum temperature | Annual |
| M-OIT | May-October minimum temperature | Seasonal |
| N-AIT | November-April minimum temperature | Seasonal |
| AIT | Annual minimum temperature | Annual |
| ATO | Annual thermal oscillation | Annual |
| M-OP | May-October precipitation | Seasonal |
| N-AP | November-April Precipitation | Seasonal |
| M-OPH | May-October photoperiod | Seasonal |
| N-APH | November-April photoperiod | Seasonal |
| AMAI | Annual moisture availability index | Annual |
| M-OMI | May-October moisture availability index | Seasonal |
| N-AMI | November-April moisture availability index | Seasonal |
| Agro-climatic region | Annual moisture availability index* | Annual mean temperature (°C)* |
|---|---|---|
| Semi-arid very warm | 0.2 to 0.5 | > 26 |
| Dry sub-humid very warm | 0.5 to 0.65 | > 26 |
| Dry sub-humid temperate | 0.5 to 0.65 | 12 to 18 |
| Humid sub-humid semi-warm | 0.65 to 1.0 | 18 to 22 |
| Humid sub-humid warm | 0.65 to 1.0 | 22 to 26 |
| Humid sub-humid very warm | 0.65 to 1.0 | > 26 |
| Humid temperate | > 1.0 | 12 to 18 |
| Humid semi-warm | > 1.0 | 18 to 22 |
| Humid warm | > 1.0 | 22 to 26 |
| Humid very warm | > 1.0 | > 26 |
| Variable | Minimum | Maximum | Optimum |
|---|---|---|---|
| Annual mean moisture index | 0.49 | 4.95 | 1.128-2.932 |
| May-October mean moisture index | 0.92 | 10.52 | 2.02-4.78 |
| November-April mean moisture index | 0.026 | 3.82 | 0.62-2.62 |
| Annual mean precipitation | 737 | 4874 | 1940-3839 |
| May-October mean precipitation (mm) | 648 | 3658 | 1524-2880 |
| November-April mean precipitation (mm) | 26 | 1657 | 416-1059 |
| Annual mean temperature | 12.1 | 29 | 23-28 |
| Annual mean maximum temperature | 17 | 35 | 28-33.5 |
| Annual mean minimum temperature | 7.2 | 23 | 18-22.5 |
| May-October mean temperature | 11 | 31.9 | 24-29 |
| May-October mean maximum temperature | 15.5 | 39.4 | 29-35 |
| May-October mean minimum temperature | 6.51 | 24.5 | 19-23 |
| November-April mean temperature | 11.6 | 30.3 | 22-26.9 |
| November-April mean maximum temperature | 17.8 | 35.7 | 26.5-32 |
| November-April mean minimum temperature | 5.5 | 24.9 | 17.5-21.8 |
| May-October mean photoperiod | 12.30 | 13.59 | 12.90-11.15 |
| November-April mean photoperiod | 10.44 | 11.70 | 11.27-11.50 |
| Annual mean thermal oscillation | 8.22 | 21.10 | 10.1-12.9 |
| Annual range of temperature | 11.73 | 22.4 | 16.87-20.15 |
| Elevation | 5 | 3001 | 5-1125 |
| Environmental variables | Contribution (%) | Permutation importance (%) | |
|---|---|---|---|
| Annual moisture availability index | 38.4 | 3.5 | |
| November-April photoperiod | 20.7 | 26.8 | |
| Annual thermal oscillation | 17.1 | 9.5 | |
| May-October moisture index | 9.1 | 42.7 | |
| November-April moisture availability index | 8.4 | 6.2 | |
| Precipitation of the driest month | 3.7 | 2.9 | |
| Mean temperature of the coldest quarter | 2.5 | 8.3 | |
| Area (km2) | |||
|---|---|---|---|
| 1961-2010 | 2050 RCP4.5 | 2050 RCP8.5 | |
| Environmental suitability | 692,123 | 365,680 | 763,589 |
| Suitability expansion | 46,826 | 154,530 | |
| Suitability contraction | 373,269 | 83,064 | |
| Suitability without change | 318,854 | 609,059 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).