Submitted:
29 June 2023
Posted:
30 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Pets as sentinels for environmental pollutants
2.1. Early warning signs of an environment polluted with asbestos fibers and heavy metals
2.2. Pets and early warning signs for heavy metals in water and food
3. Enemies hidden in the microclimate of houses
3.1. Secondhand smoke, danger early detected by companion animals
3.2. Pets, sentinels and biomonitors for Persistent Organic Pollutants and Brominated Flame Retardants-"forever chemical"
3.2.1. Brief characterization of substances from the "forever chemical "group
3.3. Comparative human-pets epidemiological studies associated with the use of "forever chemical" substances
| Compound | Cas | Diseases | Similar ailments | Authors |
|---|---|---|---|---|
| PFAS | Cat | Hyperthyroidism |
Production of endocrine and especially thyroid toxins The presence of hyperplastic or adenomatous nodules, Insidious onset, Proportionally similar values of the concentration of thyroid hormones and thyroid-stimulating hormone, Hypermetabolism manifested by progressive weight loss despite increased appetite, change in behavioral: hyperactivity, restlessness, nervousness On cat the onset hyperthyroidism in middle or old age. The histological changes of feline hyperthyroidism represent a small-scale mirror reproduction of human symptoms, moreover, the graceful companion can be a model and sentinel for individuals with toxic nodular goiter (TNG) |
[109,102] [110,111] [112,113] [114,115] [116,117,118,119] [120] |
| Pbdes | ||||
| Pbdes | Dog | Hypothyroidism | Slower, lazier activity Weight gain without an increase in appetite |
[121,122] [123,124] |
| PFAS | Cat | Obesity Childhood obesity**, Adult obesity** |
Acts as an obesogenic substance |
[78,117] [125] |
| PFAS | Cat | Type 2 diabetes Gestational diabetes mellitus ** Type 2 diabetes** |
Weight loss despite a good appetite Polydypsia Frequent urination. Retina and neural complications Common histopathologic features: deposition of pancreatic islet amyloid |
[125,126] [127,128] [129,130] [131] |
| Compound | CAs | Similar ailments | Authors | |
| PFAS | Dog : Intake water |
Fatty tumors, Pancreatic disorders, Various gastrointestinal disorders Chronic liver disease ** Fatty liver disease** Hepatotoxic effect** |
[107,132] [133,134] |
|
| PFOA, PFOS | Dog: Beagles and police dogs | Lower cholesterol Negative association with direct bilirubin** Changes in liver function biomarkers :βbilirubin, βalt, βalp** Increase: Alanine Aminotransferase -ALT, alkaline phosphatase –ALP, aspartate aminotransferase (AST), Gamma Glutamyl Transferase -GGT ** |
[99,101] [135,136] [137,138] |
|
| PFNA,PFDA | Increase circulating cholesterol concentration High blood cholesterol** |
[101] [136,137] |
||
| PBDE PCB |
Dog | Poor semen quality Testicular cancer Disruption of reproductive function and infertility** Decreased sperm counts, and genital malformations** |
[42], [139] [140] |
|
| Pcbs | Dogs | Liver cancer, Meningioma Pancreatic cancer , Mammary cancer on female dog sentinel for breast cancer on human Cancer: PCB concentrations > 1000 ppb (micrograms/l) and adipose PCB levels > 400 ppm (mg/kg)** Other type OF CANCER: melanomas, liver, gall bladder cancer, biliary tract, gastrointestinal tract, brain** |
[114,141] . [142,143] [134,144] |
|
| PCB | Cat | Lower brain weight Decreased birth weight and head size** |
[111,145] | |
| Legend: Cas- companion animals; ** human ailements | ||||
3.4. Pets, sentinels for "forever chemical"
3.5. Tags, wristband, silicone collars, the new generation of methods for analyzing the compounds in the category "forever chemical"
4. Pets, sentinels and models in comparative oncological studies induced by environmental pollutants
4.1. General characterization
4.2. Environmental pollutants and human & pet health impacts
5. One health approach. Companion animals like sentinel
5.1. Enigmas of the human-animal interaction
6. Conclusions
7. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Sandhu, S.S.; de Serres, F.J. In situ evaluation of biological hazards of environmental pollutants. Mutat. Res. Environ. Mutagen. Relat. Subj. 1989, 216, 341–352. [Google Scholar] [CrossRef]
- Natterson-Horowitz, B.; Bowers, K. Zoobiquity: what animals can teach us about health and the science of healing; Knopf Doubleday Publishing: New York, USA, 2012; 320p, ISBN-10: 0307593487. [Google Scholar]
- Beck, A.C.; Lash, E.M.; Hack, J.B. Environmental toxic exposures using companion animals as an indicator of human toxicity: a case report and discussion. J. Emerg. Med. 2020, 59, e1–e7. [Google Scholar] [CrossRef] [PubMed]
- Basu, N.; Scheuhammer, A.M.; Bursian, S.J.; Elliott, J.; Rouvinen-Watt, K.; Chan, H.M. Mink as a sentinel species in environmental health. Environ. Res. 2007, 103, 130–144. [Google Scholar] [CrossRef]
- O’Brien, D.J.; Kaneene, J.B.; Poppenga, R.H. The use of mammals as sentinels for human exposure to toxic contaminants in the environment. Environ. Health Perspect. 1993, 99, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, M.; Sekovanić, A.; Orct, T.; Reljić, S.; Kusak, J. Jurasović, J.; Huber, D. Apex predatory mammals as bioindicator species in environmental monitoring of elements in Dinaric Alps (Croatia). Environ. Sci. Pollut. Res. Int. 2017, 24, 23977–23991. [Google Scholar] [CrossRef]
- Schmidt, P.L. Companion animals as sentinels for public health. Vet. Clin. North Am. Small Anim. Pract. 2009, 39, 241–250. [Google Scholar] [CrossRef]
- Pocar, P.; Grieco, V.; Aidos, L.; Borromeo, V. Endocrine-disrupting chemicals and their effects in pet dogs and cats: An Overview. Animals 2023, 13, 378. [Google Scholar] [CrossRef] [PubMed]
- Available online:. Available online: https://www.labmanager.com/news/using-snakes-to-monitor-fukushima-radiation-26346 (accessed on 10 April 2023).
- Hernández, F.; Oldenkamp, R.E.; Webster, S.; Beasley, J.C.; Farina, L.L.; Wisely, S.M. Raccoons (Procyon lotor) as sentinels of trace element contamination and physiological effects of exposure to coal fly ash. Arch. Environ. Contam. Toxicol. 2017, 72, 235–246. [Google Scholar] [CrossRef]
- Eccles, K.M.; Thomas, P.J.; Chan, H.M. Relationships between mercury concentrations in fur and stomach contents of river otter (Lontra canadensis) and mink (Neovison vison) in Northern Alberta Canada and their applications as proxies for environmental factors determining mercury bioavailability. Environ. Res. 2020, 181, 108961. [Google Scholar] [CrossRef]
- Bukowski, J.A.; Wartenberg, D. An alternative approach for investigating the carcinogenicity of indoor air pollution: pets as sentinels of environmental cancer risk. Environ. Health Perspect. 1997, 105, 1312–1319. [Google Scholar] [CrossRef]
- Backer, L.C.; Grindem, C.B.; Corbett, W.T.; Cullins, L.; Hunter, J.L. Pet dogs as sentinels for environmental contamination. Sci. Total Environ. 2001, 274, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Moberg, H.L.; Gramer, I.; Schofield, I.; Blackwood, L.; Killick, D.; Priestnall, S.L.; Guillén, A. Clinical presentation, treatment and outcome of canine malignant mesothelioma: A retrospective study of 34 cases. Vet. Comp. Oncol. 2022, 20, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Mesothelioma in Dogs. https://wagwalking.com/condition/mesothelioma#symptomsSoken-Huberty, E. 10 Reasons Why Pets Are Important to Humans. Available online: https://theimportantsite.com/10-reasons-why-pets-are-important-to-humans/?utm_content=cmp-true (accessed on 12 January 2023).
- Nabeta, R.; Nakagawa, Y.; Chiba, S.; Xiantao, H.; Usui, T.; Suzuki, K.; Furuya, T.; Fukushima, R.; Uchide, T. Pericardial mesothelioma in a dog: the feasibility of ultrasonography in monitoring tumor progression. Front. Vet. Sci. 2019, 6, 121. [Google Scholar] [CrossRef]
- D’Angelo, A.R.; Francesco, G.; Di Quaglione, G.R.; Marruchella, G. Sclerosing peritoneal mesothelioma in a dog: histopathological, histochemical, and immunohistochemical investigations. Vet. Ital. 2014, 50, 301–305. [Google Scholar] [CrossRef]
- Mott, F.E. Mesothelioma: a review. Ochsner, J. 2012, 12, 70–79. [Google Scholar] [PubMed]
- Rossini, M.; Rizzo, P.; Bononi, I.; Clementz, A.; Ferrari, R.; Martini, F.; Tognon, M.G. New perspectives on diagnosis and therapy of malignant pleural mesothelioma. Frontiers in oncology 2018, 8, 91. [Google Scholar] [CrossRef]
- Evinger, J.V.; Blakemore, J.C. Dermatitis in a dog associated with exposure to an arsenic compound. J. Am. Vet. Med. Assoc. 1984, 184, 1281–1282. [Google Scholar] [CrossRef]
- Bruere, S.N. Arsenical poisoning in farm dogs. N. Z. Vet. J. 1980, 28, 220. [Google Scholar] [CrossRef]
- Kapaj, S.; Peterson, H.; Liber, K.; Bhattacharya, P. Human health effects from chronic arsenic poisoning–a review. J. Environ. Sci. Health A, 2006, 41, 2399–2428. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, D.; Sahu, A.P. Arsenic in the environment: effects on human health and possible prevention. J. Environ. Biol. 2007, 28, 359–365. Available online: www.jeb.co.in.
- Cohen, S.M.; Ohnishi, T.; Arnold, L.L.; Le, X.C. Arsenic-induced bladder cancer in an animal model. Toxicol. Appl. Pharmacol. 2007, 222, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Dixit, V.P.; Lohiya, N.K.; Agrawal, M. Effect of cadmium chloride on testis and epididymides of dog. A biochemical study. Acta Biol. Acad. Sci. Hung. 1975, 26, 97–103. [Google Scholar]
- Nelson, R.W.; Couto, C.G. Small animal internal medicine, 6rd ed.; Elsevier: Missouri, 2019; ISBN 978-0-323-57014-5. [Google Scholar]
- Beynen, A.C. Cadmium in petfood; 2020. Available online: https://www.researchgate.net/publication/345892225_Beynen_AC_2020_Cadmium_in_petfood (accessed on 20 April 2023).
- Nordberg, G.F.; Nogawa, K.; Nordberg, M. Cadmium. In Handbook on the Toxicology of Metals, 4rd ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Elsevier, 2015; Volume II, pp. 667–716. [Google Scholar] [CrossRef]
- Oldereid, N.B.; Thomassen, Y.; Attramadal, A.; Olaisen, B.; Purvis, K. Concentrations of lead, cadmium and zinc in the tissues of reproductive organs of men. Reproduction 1993, 99, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.M.; Ohnishi, T.; Arnold, L.L.; Le, X.C. Arsenic-induced bladder cancer in an animal model. Toxicol. Appl. Pharmacol. 2007, 222, 258–263. [Google Scholar] [CrossRef]
- Kim, H.T.; Loftus, J.P.; Mann, S.; Wakshlag, J.J. Evaluation of arsenic, cadmium, lead and mercury contamination in over-the-counter available dry dog foods with different animal ingredients (red meat, poultry, and fish). Front. Vet. Sci. 2018, 5, 264. [Google Scholar] [CrossRef]
- Patočka, J.; Černý, K. Inorganic lead toxicology. Acta Medica (Hradec Kralove), 2003, 46, 65–72. [Google Scholar] [CrossRef]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: a review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef]
- Rana, M.N.; Tangpong, J.; Rahman, M.M. Toxicodynamics of lead, cadmium, mercury and arsenic-induced kidney toxicity and treatment strategy: a mini review. Toxicol. Rep. 2018, 5, 704–713. [Google Scholar] [CrossRef]
- Chang, L.W.; Yamaguchi, S.; Dudley, A.W. Neurological changes in cats following long-term diet of mercury contaminated tuna. Acta Neuropathol. 1974, 27, 171–176. [Google Scholar] [CrossRef]
- Charbonneau, S.M.; Munro, I.C.; Nera, E.A.; Armstrong, F.A.J.; Willes, R.F.; Bryce, W.F.; Nelson, R.F. Chronic toxicity of methylmercury in the adult cat. Interim Report. Toxicology 1976, 5, 337–349. [Google Scholar] [CrossRef]
- Jomova, K.; Valko, M. Mercury toxicity. In Encyclopedia of Metalloproteins; Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., Eds.; Springer: New York, USA, 2013; pp. 1367–1372. [Google Scholar]
- National Research Council (US), Committee on Animals as Monitors of Environmental Hazards. Animals as Sentinels of Environmental Health Hazards. National Academies Press (US), Washington (DC), 1991. Available online: https://www.ncbi.nlm.nih.gov/books/NBK234946/.
- Harbison, M.L.; Godleski, J.J. Malignant Mesothelioma in Urban Dogs. Vet. Pathol. 1983, 20, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Hare, E.; Buchweitz, J.P.; Kelsey, K.M.; Fitzgerald, S.D. Fifteen-year surveillance of pathological findings associated with death or euthanasia in search-and-rescue dogs deployed to the September 11, 2001, terrorist attack sites. J. Am. Vet. Med. Assoc. 2020, 257, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Heavy Metal Toxicity in Pets. Available online: https://www.authenticapets.com/en/blog/heavy-metal-toxicity-in-pets (accessed on 10 April 2023).
- Chen, X.; Cao, S.; Wen, D.; Geng, Y.; Duan, X. Sentinel animals for monitoring the environmental lead exposure: combination of traditional review and visualization analysis. Environ. Geochem. Health 2023, 45, 561–584. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, M.H.; Kim, S.K. Studies on the concentrations of Cd, Pb, Hg and Cr in dog serum in Korea. Asian-Aust. J. Anim. Sci. 2005, 18, 1623–1627. [Google Scholar] [CrossRef]
- Toyomaki, H.; Yabe, J.; Nakayama, S.M.; Yohannes, Y. B.; et al. Factors associated with lead (Pb) exposure on dogs around a Pb mining area, Kabwe, Zambia. Chemosphere 2020, 247. [Google Scholar] [CrossRef] [PubMed]
- Serpe, F.P.; Russo, R.; De Luna, R.; Florio, S.; Esposito, M.; Severino, L. Heavy metal levels in dog liver and kidney in naples (Campania, Italy). In Trends in Veterinary Sciences; Boiti, C., Ed.; Springer-Verlag: Berlin, Heidelberg, 2013; pp. 115–117. [Google Scholar] [CrossRef]
- Esposito, M.; De Roma, A.; Maglio, P.; Sansone, D.; Picazio, G.; Bianco, R.; et al. Heavy metals in organs of stray dogs and cats from the city of Naples and its surroundings (Southern Italy). Environ. Sci. Pollut. Res. Int. 2019, 26, 3473–3478. [Google Scholar] [CrossRef]
- Lanocha, N.; Kalisinska, E.; Kosik-Bogacka, D.I.; Budis, H.; Sokolowski, S.; Bohatyrewicz, A. Comparison of metal concentrations in bones of long-living mammals. Biol. Trace Elem. Res, 2013, 152, 195–203. [Google Scholar] [CrossRef]
- Forte, G.; Ariu, F.; Bocca, B.; Solinas, G.; Leoni, G.G.; Podda, A.; Madeddu, R.; Bogliolo, L. Heavy Metal(loid) Accumulation in the Ovarian Tissue of Free-Ranging Queens and Bitches Inhabiting Highly Polluted Urban Environments. Animals 2023, 13, 650. [Google Scholar] [CrossRef]
- Thomas, C.W.; Rising, J.L.; Moore, J.K. Blood lead concentrations of children and dogs from 83 Illinois families. J. Am. Vet. Med. Assoc. 1976, 169, 1237–1240. [Google Scholar] [PubMed]
- Bischoff, K.; Priest, H.; Mount-Long, A. Animals as sentinels for human lead exposure: a case report. J. Med. Toxicol. 2010, 6, 185–189. [Google Scholar] [CrossRef]
- Berny, P.J.; Côté, L.M.; Buck, W.B. Can household pets be used as reliable monitors of lead exposure to humans? Sci. Total Environ. 1995, 172, 163–173. [Google Scholar] [CrossRef]
- Berny, P.J.; Côté, L.M.; Buck, W.B. Relationship between soil lead, dust lead, and blood lead concentrations in pets and their owners: evaluation of soil lead threshold values. Environ. Res. 1994, 67, 84–97. [Google Scholar] [CrossRef]
- Pastorinho, M.R.; Sousa, A.C.A. Pets as sentinels of human exposure to neurotoxic metals. In Pets as Sentinels, Forecasters and Promoters of Human Health; 2020; pp. 83–106. [Google Scholar] [CrossRef]
- Petrov, E.A.; Nikolovski, G.; Ulčar, I.; Enimiteva, V. Examination of the content of heavy metals using hair samples in dogs of urban areas of Macedonia. Veterinary World 2011, 4, 368–370. [Google Scholar] [CrossRef]
- Nikolovski, G.; Atanaskova, E. Use of canine hair samples as indicators of lead and cadmium pollution in the Republic of Macedonia. Bulg. J. Vet. Med. 2011, 14, 57–61. [Google Scholar]
- Jafari, S. Use of pets as indicators of heavy metal exposure across Sydney. Master’s Thesis, Macquarie University, Sydney, 2016. [Google Scholar] [CrossRef]
- Vázquez, C.; Rodríguez Castro, M.C.; Palacios, O.; Boeykens, S.P. Risk analysis of acute and chronic exposure to arsenic of the inhabitants in a district of Buenos Aires, Argentina. J. Sustain. Dev. Energy Water Environ. Syst. 2016, 4, 234–241. [Google Scholar] [CrossRef]
- Rodriguez Castro, M.C.; Andreano, V.; Custo, G.; Vázquez, C. Potentialities of total reflection X-ray fluorescence spectrometry in environmental contamination: Hair of owned dogs as sentinel of arsenic exposure. Microchemical Journal 2013, 110, 402–406. [Google Scholar] [CrossRef]
- Sousa, A.; et al. Mercury, pets’ and hair: baseline survey of a priority environmental pollutant using a noninvasive matrix in man’s best friend. Ecotoxicology 2013, 22, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Skibniewska, E.M.; Skibniewski, M. Mercury contents in the liver, kidneys and hair of domestic cats from the Warsaw Metropolitan Area. Appl. Sci. 2023, 13, 269. [Google Scholar] [CrossRef]
- Behrooz, D.; Poma, R.G. Evaluation of mercury contamination in Iranian wild cats through hair analysis. Biol. Trace Elem. Res. 2021, 199, 166–172. [Google Scholar] [CrossRef]
- Sakai, T.; Ito, M.; Aoki, H.; Aimi, K.; Nitaya, R. Hair mercury concentrations in cats and dogs in Central Japan. Br. Vet. J. 1995, 151, 215–219. [Google Scholar] [CrossRef]
- Dunlap, K.L.; Reynolds, A.J.; Bowers, P.M.; Duffy, L.K. Hair analysis in sled dogs (Canis lupus familiaris) illustrates a linkage of mercury exposure along the Yukon River with human subsistence food systems. Sci. Total Environ. 2007, 385, 80–85. [Google Scholar] [CrossRef]
- Aeluro, S.; Kavanagh, T.J. Domestic cats as environmental lead sentinels in low-income populations: a One Health pilot study sampling the fur of animals presented to a high-volume spay/neuter clinic. Environ. Sci. Pollut. Res. Int. 2021, 28, 57925–57938. [Google Scholar] [CrossRef] [PubMed]
- Dietz, R.; Mosbech, A.; Flora, J.; Eulaers, I. Interactions of climate, socio-economics, and global mercury pollution in the North Water. Ambio 2018, 47, 281–295. [Google Scholar] [CrossRef]
- Dunlap, K.L.; Reynolds, A.J.; Gerlach, S.C.; Duffy, L.K. Mercury interferes with endogenous antioxidant levels in Yukon River subsistence-fed sled dogs. Environ. Res. Lett. 2011, 6, 044015. [Google Scholar] [CrossRef]
- Amadi, C.N.; Frazzoli, C.; Orisakwe, O.E. Sentinel species for biomonitoring and biosurveillance of environmental heavy metals in Nigeria. J. Environ. Sci. Health (part C), 2020, 38, 21–60. [Google Scholar] [CrossRef] [PubMed]
- Harley, J.R.; Bammler, T.K.; Farin, F.M.; Beyer, R.P.; Kavanagh, T.J.; Dunlap, K.L.; O’Hara, T.M. Using domestic and free-ranging Arctic canid models for environmental molecular toxicology research. Environ. Sci. Technol. 2016, 50, 1990–1999. [Google Scholar] [CrossRef] [PubMed]
- Klejka, J. Using hair as an Indicator of Mercury Exposure in Sled Dogs. 2012. Available online: https://scholarworks.alaska.edu/bitstream/handle/11122/1529/KlejkaJ.pdf?sequence=1&isAllowed=y (accessed on 14 April 2023).
- Rabinowitz, P.; Scotch, M.; Conti, L. Human and animal sentinels for shared health risks. Vet. Ital. 2009, 45, 23–24. Available online: https://pubmed.ncbi.nlm.nih.gov/20148187.
- Eto, K.; Yasutake, A.; Nakano, A.; Akagi, H.; Tokunaga, H.; Kojima, T. Reappraisal of the historic 1959 cat experiment in Minamata by the Chisso factory. Tohoku, J. Exp. Med. 2001, 194, 197–203. [Google Scholar] [CrossRef]
- Reif, J.S. Animal sentinels for environmental and public health. Public Health Rep. 2011, 126, 50–57. [Google Scholar] [CrossRef]
- Polluted Pets. High Levels of Toxic Industrial Chemicals Contaminate Cats And Dogs. Available online: https://www.ewg.org/research/polluted-pets, 2008 (accessed on 22 January 2023).
- Ruiz-Suárez, N.; Rial, C.; Boada, L.D.; Henríquez-Hernández, L.A.; Valeron, P.F.; Camacho, M.; Zumbado, M.; Almeida González, M.; Lara, P.; Luzardo, O.P. Are pet dogs good sentinels of human exposure to environmental polycyclic aromatic hydrocarbons, organochlorine pesticides and polychlorinated biphenyls? J. Appl. Anim. Res. 2016, 44, 135–145. [Google Scholar] [CrossRef]
- Secondhand and Third hand Smoke and Cats. Available online: https://www.purplecatvet.com/secondhand-and-thirdhand-smoke-and-cats/ (accessed on 8 April 2023).
- Pérez, N.; Berrío, A.; Jaramillo, J.E.; Urrego, R.; Arias, M.P. Exposure to cigarette smoke causes DNA damage in oropharyngeal tissue in dogs. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 769, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Llera, R.; Buzhardt, L. The Effects of Secondhand Smoke on Pets. Available online: https://vcahospitals.com/know-your-pet/the-effects-of-second-hand-smoke-on-pets (accessed on 8 April 2023).
- Bost, P.C.; Strynar, M.J.; Reiner, J.L.; Zweigenbaum, J.A.; Secoura, P.L.; Lindstrom, A.B.; Dye, J.A. U.S. domestic cats as sentinels for perfluoroalkyl substances: possible linkages with housing, obesity, and disease. Environ. Res. 2016, 151, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Bertone, E.R.; Snyder, L.A.; Moore, A.S. Environmental tobacco smoke and risk of malignant lymphoma in pet cats. Am. J. Epidemiol. 2002, 156, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Denson, K.W.E. RE: Environmental tobacco smoke and risk of malignant lymphoma in pet cats. American Journal of Epidemiology 2003, 158, 1227. [Google Scholar] [CrossRef]
- Moore, A.S. Environmental causes of cancer in pets. World Small Animal Veterinary Association World Congress Proceedings, 2007. Available online: https://www.vin.com/doc/?id=3860738 359 82.
- Reif, S.J.; Bruns, C.; Lower, K.S. Cancer of the nasal cavity and paranasal sinuses and exposure to environmental tobacco smoke in pet dogs. Am. J. Epidemiol. 1998, 147, 488–492. [Google Scholar] [CrossRef]
- Bertone-Johnson, E.R.; Procter-Gray, E.; Gollenberg, A.L.; Ryan, M.B.; Barber, L.G. Environmental tobacco smoke and canine urinary cotinine level. Environ. Res. 2008, 106, 361–364. [Google Scholar] [CrossRef]
- Reif, J.S.; Dunn, K.; Ogilvie, G.K.; Harris, C.K. Passive smoking and canine lung cancer risk. Am. J. Epidemiol. 1992, 135, 234–239. [Google Scholar] [CrossRef]
- Bukowski, J.A.; Wartenberg, D.; Goldschmidt, M. Environmental causes for sinonasal cancers in pet dogs, and their usefulness as sentinels of indoor cancer risk. J. Toxicol. Environ. Health (A) 1998, 54, 579–591. [Google Scholar] [CrossRef]
- Roza, M.R.; Viegas, C.A. The Dog as a Passive Smoker: Effects of Exposure to Environmental Cigarette Smoke on Domestic Dogs. Nicotine Tob. Res. 2007, 9, 1171–1176. Available online: http://www.jstor.org/stable/26762036. [CrossRef]
- Secondhand Smoke and Cancer. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk/tobacco/second-hand-smoke-fact-sheet#r10 (accessed on 19 May 2023).
- Du, Y.; Cui, X.; Sidorenkov, G.; Groen, H.J.M.; Vliegenthart, R.; Heuvelmans, M.A.; Liu, S.; Oudkerk, M.; de Bock, G.H. Lung cancer occurrence attributable to passive smoking among never smokers in China: a systematic review and meta-analysis. Transl. Lung Cancer Res. 2020, 9, 204–217. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Chen, Y.; Langhammer, A.; Skorpen, F.; Wu, C.; Mai, X.M. Passive smoking in relation to lung cancer incidence and histologic types in Norwegian adults: the HUNT study. Eur. Respir. J. 2017, 50. [Google Scholar] [CrossRef]
- Dobson, R. Passive smoking increases children’s risk of nasal cancer. B.M.J. 2005, 331, 534. [Google Scholar] [CrossRef]
- Berstein, S. 2020, How Secondhand Smoke Raises Your Lung Cancer Risk. Available online: https://www.webmd.com/lung-cancer/guide/secondhand-smoke-lung-cancer (accessed on 12 February 2023).
- Al-Delaimy, W.K. Hair as a biomarker for exposure to tobacco smoke. Tob. Control. 2002, 11, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.A.; McBrearty, A.R.; Watson, D.G.; Mellor, D.J.; Spence, S.; Knottenbelt, C. Hair nicotine concentration measurement in cats and its relationship to owner-reported environmental tobacco smoke exposure. J. Small Anim. Pract. 2017, 58, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Welle, M.M.; Wiener, D.J. The Hair Follicle: A Comparative Review of Canine Hair Follicle Anatomy and Physiology. Toxicol. Pathol. 2016, 44, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Silverstein, T.P. Analysis of nicotine in dog hair: significant dose-response to passive smoke. J. Undergrad. Chem. Res. 2022, 21, 7–10. Available online: https://www.westmont.edu/sites/default/files/2022-02/Todd%20Silverstein_final.pdf.
- Knottenbelt, C.M.; Bawazeer, S.; Hammond, J.; Mellor, D.; Watson, D.G. Nicotine hair concentrations in dogs exposed to environmental tobacco smoke: a pilot study. J. Small Anim. Pract. 2012, 53, 623–626. [Google Scholar] [CrossRef]
- Benowitz, N.L. (1996). Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiol. Rev. 1996, 18, 188–204. [Google Scholar] [CrossRef] [PubMed]
- Groppetti, D.; Pizzi, G.; Pecile, A.; Bronzo, V.; Mazzola, S.M. Cotinine as a sentinel of canine exposure to tobacco smoke. Animals 2023, 13. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.R.; Derting, T.L. The Relationship Between Canine Nasal Length and Cotinine Level in Second-hand Smoke. Available online: https://digitalcommons.murraystate.edu/cgi/viewcontent.cgi?article=1033&context=scholarsweek (accessed on 23 May 2023).
- John, J.; Coulon, F.; Chellam, P.V. Detection and treatment strategies of per-and polyfluoroalkyl substances (PFAS): fate of PFAS through DPSIR framework analysis. J. Water Process. Eng. 2022, 45. [Google Scholar] [CrossRef]
- Parolini, M.; De Felice, B.; Rusconi, M.; Morganti, M.; Polesello, S.; Valsecchi, S. A review of the bioaccumulation and adverse effects of PFAS in free-living organisms from contaminated sites nearby fluorochemical production plants. Water Emerg. Contam. Nanoplastics 2022, 1, 18. [Google Scholar] [CrossRef]
- Ma, T.; Wu, P.; Ding, Z.; Wang, T.; Luo, Y. Pet cats, the better sentinels for indoor organic pollutants. Front. Environ. Sci. 2022, 10, 2064. [Google Scholar] [CrossRef]
- Li, M.; Liu, Z.; Gu, L.; Yin, R.; Li, H.; Zhang, X.; Cao, T.; Jiang, C. Toxic effects of decabromodiphenyl ether (BDE-209) on human embryonic kidney cells. Front. Genet. 2014, 6, 118. [Google Scholar] [CrossRef] [PubMed]
- Abou-Donia, M.; Salama, M.; Elgamal, M.M.; Elkholi, I.E.; Wang, Q. Organophosphorus flame retardants (OPFR): Neurotoxicity. J. Environ. Health Sci. 2016, 2, 1–29. [Google Scholar] [CrossRef]
- EFSA, 2023, Brominated flame retardants. Available online: https://www.efsa.europa.eu/en/topics/topic/brominated-flame-retardants (accessed on 18 April 2023).
- Toxic Substances Portal. Available online: https://wwwn.cdc.gov/TSP/substances/ToxSubstance.aspx?toxid=26 (accessed on 5 January 2023).
- Roth, K.; Petriello, M.C. Exposure to per- and polyfluoroalkyl substances (PFAS) and type 2 diabetes risk. Front. Endocrinol. 2022, 13, 965384. [Google Scholar] [CrossRef]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per-and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ.Ttoxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef]
- Osteen, M.C. Analyzing Euthyroid & Hyperthyroid Indoor Cat Exposure to Flame Retardants. Master’s project, Duke University, 2020. Available online: https://hdl.handle.net/10161/20482.
- Dunayer, E.K. Small Mammal Toxicology. In Small Animal Toxicology, 3rd ed.; Peterson, M.E., Talcott, P.A., Eds.; Elsevier, 2013; pp. 251–257. [Google Scholar] [CrossRef]
- Chang, X.; Guo, L.; et al. Per- and polyfluoroalkyl substances (PFASs) in the blood of police and Beagle dogs from Harbin, China: concentrations and associations with hematological parameters. Chemosphere. 2022, 299, 134367. [Google Scholar] [CrossRef]
- Brake, H.D.; Wilkins, M.J.; Kaneene, J.B. Per-and polyfluoroalkyl substances: using comparative medicine to understand exposure and adverse health outcomes in people and their pets. Am. J. Vet. Res. 2023, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Polluted Pets. Amounts of Toxics in Blood and Urine Many Times Higher in Pets Than Humans. Available online: https://www.ewg.org/news-insights/news-release/polluted-pets, 2008 (accessed on 14 April 2023).
- Potera, C. Chemical exposures: cats as sentinel species. Environ. Health Perspect. 2007, 115. [Google Scholar] [CrossRef]
- Wise, C.F.; Hammel, S.C.; Herkert, N.; Ma, J.; Motsinger-Reif, A.; Stapleton, H.M.; Breen, M. Comparative exposure assessment using silicone passive samplers indicates that domestic dogs are sentinels to support human health research. Environ. Sci. Technol. 2020, 54, 7409–7419. [Google Scholar] [CrossRef]
- Hamzai, L.; Lopez Galvez, N.; Hoh, E.; Dodder, N.G.; Matt, G.E.; Quintana, P.J. A systematic review of the use of silicone wristbands for environmental exposure assessment, with a focus on polycyclic aromatic hydrocarbons (PAHs). J. Expo. Sci. Environ. Epidemiol. 2022, 32, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Jung, H.W.; Kim, H.Y.; Choi, Y.J.; Lee, Y.A. Early-life exposure to per-and poly-fluorinated alkyl substances and growth, adiposity, and puberty in children: a systematic review. Front. Endocrinol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Bonato, M.; Corrà, F.; Bellio, M.; Guidolin, L.; Tallandini, L.; Irato, P.; Santovito, G. PFAS environmental pollution and antioxidant responses: an overview of the impact on human field. Int. J. Environ. Res. Public Health 2020, 17, 8020. [Google Scholar] [CrossRef] [PubMed]
- DeLuca, N.M.; Minucci, J.M.; Mullikin, A.; Slover, R.; Hubal, E.A.C. Human exposure pathways to poly-and perfluoroalkyl substances (PFAS) from indoor media: A systematic review. Environ. Int. 2022, 162, 107149. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kim, K.N.; Shin, C.H.; Lim, Y.H.; Kim, J.I.; Kim, B.N.; Lee, Y.A. The relationship between perfluoroalkyl substances concentrations and thyroid function in early childhood: a prospective cohort study. Thyroid 2020, 30, 1556–1565. [Google Scholar] [CrossRef] [PubMed]
- Five illnesses pets and humans have in common. Available online: https://www.bbc.com/news/health-39082075 (accessed on 20 March 2023).
- Lau, G.; Walter, K.; Kass, P.; Puschner, B. Comparison of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in the serum of hypothyroxinemic and euthyroid dogs. PeerJ. 2017, 5. [Google Scholar] [CrossRef]
- Schilling, R.J.; Steele, G.K.; Harris, A.E.; Donahue, J.F.; Ing, R.T. Canine serum levels of polychlorinated biphenyls (PCBs): a pilot study to evaluate the use of animal sentinels in environmental health. Arch. Environ. Health 1988, 43, 218–221. [Google Scholar] [CrossRef]
- Williams, K.; Ward, E. Hypothyroidism in Dogs. Available online: https://vcahospitals.com/know-your-pet/hypothyroidism-in-dogs (accessed on 20 May 2023).
- Lewitt, M.S. Feline obesity and diabetes: a One Health perspective. CABI Reviews 2019, 1–10. [Google Scholar] [CrossRef]
- Birru, R.L.; Liang, H.W.; Farooq, F.; et al. A pathway level analysis of PFAS exposure and risk of gestational diabetes mellitus. Environ. Health 2021, 20, 63. [Google Scholar] [CrossRef]
- Obsekov, V.; Kahn, L.G.; Trasande, L. Leveraging Systematic Reviews to Explore Disease Burden and Costs of Per- and Polyfluoroalkyl Substance Exposures in the United States. Expo. Health 2023, 15, 373–394. [Google Scholar] [CrossRef]
- Barhum, L. 2023, What are the symptoms of type 2 diabetes? Available online:. Available online: https://www.medicalnewstoday.com/articles/317462 (accessed on 7 June 2023).
- Ramachandran, A. Know the signs and symptoms of diabetes. Indian, J. Med. Res 2014, 140, 579–581. [Google Scholar] [PubMed]
- Niessen, S.J.; Forcada, Y.; Mantis, P.; Lamb, C.R.; Harrington, N.; Fowkes, R.; Korbonits, M.; Smith, K.; Church, D.B. Studying Cat (Felis catus) Diabetes: Beware of the Acromegalic Imposter. PLoS One 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Niaz, K.; Maqbool, F.; Khan, F.; Hassan, F.I.; Momtaz, S.; Abdollahi, M. Comparative occurrence of diabetes in canine, feline, and few wild animals and their association with pancreatic diseases and ketoacidosis with therapeutic approach. Vet World. 2018, 11, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Barnes, G. These Pets Have High Levels Of Forever Chemicals In Their Blood. Has That Made Them Sick?, 2021. Available online: https://www.wunc.org/health/2021-05-10/these-pets-have-high-levels-of-forever-chemicals-in-their-blood-has-that-made-them-sick (accessed on 23 February 2023).
- Zhang, X.; Zhao, L.; Ducatman, A.; Deng, C.; von Stackelberg, K.E.; Danford, C.J.; Zhang, X. Association of per-and polyfluoroalkyl substance exposure with fatty liver disease risk in US adults. JHEP Reports 2023, 5, 100694. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yang,X. ; Du, Y.; Li, R.; Zhou,T.; Wang, Y.; Chen,T.; Wang, D.; Shi, Z. Polybrominated diphenyl ethers in serum from residents living in a brominated flame retardant production area: Occurrence, influencing factors, and relationships with thyroid and liver function. Environ. Pollut. 2021, 270. [Google Scholar] [CrossRef]
- Salihovic, S.; Stubleski, J.; Kärrman, A.; Larsson, A.; Fall, T.; Lind, L.; Lind, P.M. Changes in markers of liver function in relation to changes in perfluoroalkyl substances - A longitudinal study. Environ. Int. 2018, 117, 196–203. [Google Scholar] [CrossRef] [PubMed]
- You, D.; Chang, X.; Guo, L.; Xie, W.; Huang, S.; Li, X.; Chai, H.; Wang, Y. Per-and polyfluoroalkyl substances (PFASs) in the blood of police and Beagle dogs from Harbin, China: concentrations and associations with hematological parameters. Chemosphere 2022, 299. [Google Scholar] [CrossRef]
- Kirk, M.; Smurthwaite, K.; Braunig, J.; Trevenar, S.; D’Este, C.; Lucas, R.; Lal, A.; Korda, R.; Clements, A.; Mueller, J.; Armstrong, B. The PFAS health study: systematic literature review. The Australian National University: Canberra, 2018. [Google Scholar]
- Costello, E.; Rock, S.; Stratakis, N.; Eckel, S.P.; Walker, D.I.; Valvi, D.; Cserbik, D.; Jenkins, T.; Xanthakos, S.A.; Kohli, R.; Sisley, S.; Vasiliou, V.; La Merrill, M.A.; Rosen, H. , Conti, D.V.; Mc Connell, R.; Chatzi, L. Exposure to per-and polyfluoroalkyl substances and markers of liver injury: a systematic review and meta analysis. Environ. Health Perspect. 2022, 130, 046001. [Google Scholar] [CrossRef] [PubMed]
- Sumner, R.N.; Byers, A.; Zhang, Z.; Agerholm, J.S.; Lindh, L.; England, G.C.; Lea, R.G. Environmental chemicals in dog testes reflect their geographical source and may be associated with altered pathology. Sci. Rep. 2021, 11, 7361. [Google Scholar] [CrossRef]
- Sheikh, I.A.; Beg, M.A.; Hamoda, T.A.A.; Mandourah, H.M.S.; Memili, E. An Analysis of the Structural Relationship between Thyroid Hormone-Signaling Disruption and Polybrominated Diphenyl Ethers: Potential Implications for Male Infertility. Int. J. Mol. Sci. 2023, 24, 3296. [Google Scholar] [CrossRef]
- Deen, L.; Hougaard, K.S.; Clark, A.; Meyer, H.W.; Frederiksen, M.; Gunnarsen, L.; Andersen, H.V.; Hougaard, T.; Petersen, K.K.U.; Ebbehøj, N.E.; Bonde, J.P.; Tøttenborg, S.S. Cancer Risk following Residential Exposure to Airborne Polychlorinated Biphenyls: A Danish Register-Based Cohort Study. Environ. Health Perspect. 2022, 130, 107003. [Google Scholar] [CrossRef] [PubMed]
- Kimbrough, R.D. Polychlorinated biphenyls (PCBs) and human health: an update. Crit. Rev. Toxicol. 1995, 25, 133–163. [Google Scholar] [CrossRef] [PubMed]
- Sévère, S.; Marchand, P.; Guiffard, I.; Morio, F.; Venisseau, A.; Veyrand, B.; Le Bizec, B.; Antignac, J.P.; Abadie, J. Pollutants in pet dogs: a model for environmental links to breast cancer. Springerplus 2015, 4. [Google Scholar] [CrossRef]
- Arcaro, K.F.; O’Keefe, P.W.; Yang, Y.; Clayton, W.; Gierthy, J.F. Antiestrogenicity of environmental polycyclic aromatic hydrocarbons in human breast cancer cells. Toxicology 1999, 133, 115–127. [Google Scholar] [CrossRef]
- Khidkhan, K.; Mizukawa, H.; Ikenaka, Y.; Nakayama, S.M.; Nomiyama, K.; Yokoyama, N.; Ichii, O.; Takiguchi, M.; Tanabe, S.; Ishizuka, M. Biological effects related to exposure to polychlorinated biphenyl (PCB) and decabromodiphenyl ether (BDE-209) on cats. PLOS ONE 2023, 18. [Google Scholar] [CrossRef]
- What Are The Human Health Effects Of PCBs? Available online:. Available online: http://www.clearwater.org/news/pcbhealth.html#refs (accessed on 8 June 2023).
- Marquès, M.; Nadal, M.; Domingo, J.L. Human exposure to polybrominated diphenyl ethers (PBDEs) through the diet: An update of the scientific literature. Food Chem. Toxicol. 2022, 167. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.M.; Jones, B.; Koekkoek, J.; Bignert, A.; Lamoree, M.H. Per- and polyfluoroalkyl substances (PFASs) in Swedish household dust and exposure of pet cats. Environ. Sci. Pollut. Res. Int. 2021, 28, 39001–39013. [Google Scholar] [CrossRef] [PubMed]
- Norrgran Engdahl, J.; Bignert, A.; Jones, B.; Athanassiadis, I.; Bergman, Å.; Weiss, J.M. Cats’ internal exposure to selected brominated flame retardants and organochlorines correlated to house dust and cat food. Environ. Sci. Technol. 2017, 51(5), 3012–3020. [Google Scholar] [CrossRef]
- Henríquez-Hernández, L.A.; Carretón, E.; Camacho, M.; Montoya-Alonso, J.A.; et al. Potential role of pet cats as a sentinel species for human exposure to flame retardants. Front. Vet. Sci. 2017, 4, 79. [Google Scholar] [CrossRef]
- Dirtu, A.C.; Niessen, S.J.; Jorens, P.G.; Covaci, A. Organohalogenated contaminants in domestic cats’ plasma in relation to spontaneous acromegaly and type 2 diabetes mellitus: a clue for endocrine disruption in humans? Environ. Int. 2013, 57-58, 60–67. [Google Scholar] [CrossRef]
- Chow, K.; Hearn, L.K.; Zuber, M.; Beatty, J.A.; Mueller, J.F.; Barrs, V.R. Evaluation of polybrominated diphenyl ethers (PBDEs) in matched cat sera and house dust samples: investigation of a potential link between PBDEs and spontaneous feline hyperthyroidism. Environ. Res. 2015, 136, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Mensching, D.A.; Slater, M.; Scott, J.W.; Ferguson, D.C.; Beasley, V.R. The feline thyroid gland: a model for endocrine disruption by polybrominated diphenyl ethers (PBDEs)? J. Toxicol. Environ. Health (A) 2012, 75, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Braouezec, C.; Enriquez, B.; Blanchard, M.; Chevreuil, M.; Teil, M.J. Cat serum contamination by phthalates, PCBs, and PBDEs versus food and indoor air. Environ. Sci. Pollut. Res. Int. 2016, 23, 9574–9584. [Google Scholar] [CrossRef]
- Nomiyama, K.; Takaguchi, K.; Mizukawa, H.; Nagano, Y.; Oshihoi, T.; Nakatsu, S.; Kunisue, T.; Tanabe, S. Species-and tissue-specific profiles of polybrominated diphenyl ethers and their hydroxylated and methoxylated derivatives in cats and dogs. Environ. Sci. Technol. 2017, 51, 5811–5819. [Google Scholar] [CrossRef]
- Zheng, X.; Erratico, C.; Luo, X.; Mai, B.; Covaci, A. Oxidative metabolism of BDE-47, BDE-99, and HBCDs by cat liver microsomes: Implications of cats as sentinel species to monitor human exposure to environmental pollutants. Chemosphere 2016, 151, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.C.; Di Vaio, P.; Magli, E.; Frecentese, F.; Meli, R.; Caliendo, G.; et al. PCB levels in adipose tissue of dogs from illegal dumping sites in Campania Region (Italy). Chemosphere 2020, 244. [Google Scholar] [CrossRef] [PubMed]
- Sumner, R.N.; Harris, I.T.; Van der Mescht, M.; Byers, A.; England, G.C.; Lea, R.G. The dog as a sentinel species for environmental effects on human fertility. Reproduction, 2020, 159, R265–R276. [Google Scholar] [CrossRef]
- Sumner, R.N.; Tomlinson, M.; Craigon, J.; England, G.C.; Lea, R.G. Independent and combined effects of diethylhexyl phthalate and polychlorinated biphenyl 153 on sperm quality in the human and dog. Sci. Rep. 2019, 9, 3409. [Google Scholar] [CrossRef]
- Knapp, D.W.; Peer, W.A.; Conteh, A.; Diggs, A.R.; Cooper, B.R.; Glickman, N.W.; Bonney, P.L.; Stewart, J.C.; Glickman, L.T.; Murphy, A.S. Detection of herbicides in the urine of pet dogs following home lawn chemical application. Sci. Total Environ. 2013, 456, 34–41. [Google Scholar] [CrossRef]
- Reynolds, P.M.; Reif, J.S.; Ramsdell, H.S.; Tessari, J.D. Canine exposure to herbicide-treated lawns and urinary excretion of 2,4-dichlorophenoxyacetic acid. Cancer Epidemiol. Biomarkers Prev. 1994, 3, 233–237. [Google Scholar]
- Brittany, W.; Foist, L. What is Acrolein? Structure and Uses. Available online: https://study.com/learn/lesson/acrolein-structure-safety-uses.html (accessed on 18 June 2023).
- Pal, V.K.; Kannan, K. Assessment of exposure to volatile organic compounds through urinary concentrations of their metabolites in pet dogs and cats from the United States. Environ. Pollut. 2023, 316, 120576. [Google Scholar] [CrossRef] [PubMed]
- Craun, K.; Luethcke, K.R.; Shafer, M.; Stanton, N.; Zhang, C.; Schauer, J.; Faulkes, J.; Sundling, K.E.; Kurtycz, D.; Malecki, K.; Trepanier, L. Environmental chemical exposures in the urine of dogs and people sharing the same households. J. Clin. Transl. Sci. 2020, 5, e54. [Google Scholar] [CrossRef] [PubMed]
- Samon, S.M.; Hammel, S.C.; Stapleton, H.M.; Anderson, K.A. Silicone wristbands as personal passive sampling devices: Current knowledge, recommendations for use, and future directions. Environ. Int. 2022, 169, 107339. [Google Scholar] [CrossRef] [PubMed]
- Beyond Pesticides. Available online: https://beyondpesticides.org/dailynewsblog/2020/06/dogs-canis-familiaris-research-tracks-dogs-exposure-to-contaminants-in-the-home-serves-as-sentinel-species-for-chemical-induced-human-diseases/ (accessed on 21 March 2023).
- Poutasse, C.M.; Poston, W.S.; Jahnke, S.A.; Haddock, C.K.; Tidwell, L.G.; Hoffman, P.D.; Anderson, K.A. Discovery of firefighter chemical exposures using military-style silicone dog tags. Environ. Int. 2020, 142, 105818. [Google Scholar] [CrossRef]
- Poutasse, C.M.; Haddock, C.K.; Poston, W.S.C.; Jahnke, S.A.; Tidwell, L.G.; Bonner, E.M.; Hoffman, P.D.; Anderson, K.A. Firefighter exposures to potential endocrine disrupting chemicals measured by military-style silicone dog tags. Environ. Int. 2022, 158, 106914. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, D.M.; Lô, S.; Krop, E.; Meijer, J.; Beeltje, H.; Lamoree, M.H.; Vermeulen, R. Do cats mirror their owner? Paired exposure assessment using silicone bands to measure residential PAH exposure. Environ. Res. 2023, 222, 115412. [Google Scholar] [CrossRef]
- Poutasse, C.M.; Herbstman, J.B.; Peterson, M.E.; Gordon, J.; Soboroff, P.H.; Holmes, D.; Gonzalez, D.; Tidwell, L.G.; Anderson, K.A. Silicone pet tags associate tris (1,3-dichloro-2-isopropyl) phosphate exposures with feline hyperthyroidism. Environ. Sci. Technol. 2019, 53, 9203–9213. [Google Scholar] [CrossRef] [PubMed]
- Fox, A. Human Genomes Are Surprisingly Cat-Like, 2021. Available online: https://www.smithsonianmag.com/smart-news/human-genomes-are-surprisingly-cat-like-180978332 (accessed on 7 June 2023).
- Ruple, A.; Avery, A.C.; Morley, P.S. Differences in the geographic distribution of lymphoma subtypes in Golden retrievers in the USA. Vet. Comp. Oncol. 2017, 15, 1590–1597. [Google Scholar] [CrossRef]
- Cooper, R.; Berkower, C.; Nass, S. National Academies of Sciences, Engineering, and Medicine. In Companion Animals as Sentinels for Predicting Environmental Exposure Effects on Aging and Cancer Susceptibility in Humans. Proceedings of a Workshop; The National Academies Press: Washington, DC, 2022. [Google Scholar] [CrossRef]
- Marconato, L.; Gelain, M.E.; Comazzi, S. The dog as a possible animal model for human non-Hodgkin lymphoma: a review. Hematological oncology, 2013, 31, 1–9. [Google Scholar] [CrossRef]
- Baumans, V. The welfare of laboratory mice. In The welfare of laboratory animals. Kaliste, E., Ed.; Springer, 2007; Volume 2, pp. 119–152. [Google Scholar] [CrossRef]
- 2022. Available online: https://www.nationalacademies.org/our-work/the-role-of-companion-animals-as-sentinels-for-predicting-environmental-exposure-effects-on-aging-and-cancer-susceptibility-in-humans-a-workshop (accessed on 29 January 2023).
- Kimura, K.C.; de Almeida Zanini, D.; Nishiya, A.T.; Dagli, M.L. Domestic animals as sentinels for environmental carcinogenic agents. BMC Proc 2013, 7 Suppl 2, K13. [Google Scholar] [CrossRef]
- Pinello, K.C.; Niza-Ribeiro, J.; Fonseca, L.; de Matos, A.J. Incidence, characteristics and geographical distributions of canine and human non-Hodgkin’s lymphoma in the Porto region (North West Portugal). Vet. J. 2019, 245, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Zanini, D.A.; Kimura, K.C.; Nishiya, A.T.; Ubukata, R.; Leandro, R.M.; et al. Environmental risk factors related to the development of canine non-Hodgkin’s lymphoma. Ciênc. Rural 2013, 43, 1302–1308. [Google Scholar] [CrossRef]
- Gavazza, A.; Presciuttini, S.; Barale, R.; Lubas, G.; Gugliucci, B. Association between canine malignant lymphoma, living in industrial areas, and use of chemicals by dog owners. J. Vet. Intern. Med. 2001, 15, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Craun, K.; Ekena, J.; Sacco, J.; Jiang, T.; Motsinger-Reif, A.; Trepanier, L.A. Genetic and environmental risk for lymphoma in boxer dogs. J. Vet. Intern. Med. 2020, 34, 2068–2077. [Google Scholar] [CrossRef] [PubMed]
- Baioni, E.; Scanziani, E.; Vincenti, M.C.; et al. Estimating canine cancer incidence: findings from a population-based tumour registry in northwestern Italy. B.M.C. Vet Res 2017, 13, 203. [Google Scholar] [CrossRef]
- Hayes, H.M.Jr.; Hoover, R.; Tarone, R.E. Bladder cancer in pet dogs: a sentinel for environmental cancer? Am. J. Epidemiol. 1981, 114, 229–233. [Google Scholar] [CrossRef]
- Cumberbatch, M.G.K.; Jubber, I.; Black, P.C.; Esperto, F.; Figueroa, J.D.; Kamat, A.M.; Kiemeney, L.; Yair, Y.; Pang, K.; Silverman, D.T.; Znaor, A.; Catto, J.W. Epidemiology of bladder cancer: a systematic review and contemporary update of risk factors in 2018. Eur. Urol. 2018, 74, 784–795. [Google Scholar] [CrossRef]
- Mortazavi, N.; Asadikaram, G.; Ebadzadeh, M.R.; Kamalati, A.; Pakmanesh, H.; Dadgar, R.; Moazed, V.; Paydar, P.; Fallah, H.; Abolhassani, M. Organochlorine and organophosphorus pesticides and bladder cancer: A case-control study. J. Cell. Biochem. 2019, 120, 14847–14859. [Google Scholar] [CrossRef]
- Glickman, L.T.; Schofer, F.S.; McKee, L.J.; Reif, J.S.; Goldschmidt, M.H. Epidemiologic study of insecticide exposures, obesity, and risk of bladder cancer in household dogs. J. Toxicol. Environ. Health 1989, 28, 407–414. [Google Scholar] [CrossRef]
- Glickman, L.T.; Raghavan, M.; Knapp, D.W.; Bonney, P.L.; Dawson, M.H. Herbicide exposure and the risk of transitional cell carcinoma of the urinary bladder in Scottish Terriers. J. Am. Vet. Med. Assoc. 2004, 224, 1290–1297. [Google Scholar] [CrossRef]
- Mutsaers, A.J.; Widmer, W.R.; Knapp, D.W. Canine transitional cell carcinoma. J. Vet. Intern. Med. 2003, 17, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Arrebola, J.P.; Belhassen, H.; Artacho-Cordón, F.; Ghali, R.; Ghorbel, H.; Boussen, H.; Perez-Carrascosa, F.M.; Exposito, J.; Hedhili, A.; Olea, N. Risk of female breast cancer and serum concentrations of organochlorine pesticides and polychlorinated biphenyls: a case-control study in Tunisia. Sci. Total Environ. 2015, 520, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Andrade, F.H.; Figueiroa, F.C.; Bersano, P.R.; Bissacot, D.Z.; Rocha, N.S. Malignant mammary tumor in female dogs: environmental contaminants. Diagn. Pathol. 2010, 5, 45. [Google Scholar] [CrossRef]
- Gautam, S.; Sood, N.K.; Gupta, K.; Joshi, C.; Gill, K.K.; Kaur, R.; Chauhan, I. Bioaccumulation of pesticide contaminants in tissue matrices of dogs suffering from malignant canine mammary tumors in Punjab, India. Heliyon 2020, 6, e05274. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, O.; Arslan, H.H.; Esin, C.; Das, Y.K.; Aksoy, A. Determination of plasma concentrations of organochlorine pesticides and polychlorinated biphenyls in pet cats and dogs. Toxicol. Ind. Health 2018, 34, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Hayes, H.M.; Tarone, R.E.; Cantor, K.P. On the association between canine malignant lymphoma and opportunity for exposure to 2,4-dichlorophenoxyacetic acid. Environ. Res. 1995, 70, 119–125. [Google Scholar] [CrossRef]
- Available online:. Available online: https://extrucan.ro/felinoterapia-sau-tratarea-cu-ajutorul-pisicilor/ (accessed on 28 February 2022).
- Bertone, E.R.; Snyder, L.A.; Moore, A.S. Environmental and lifestyle risk factors for oral squamous cell carcinoma in domestic cats. J. Vet. Intern. Med. 2003, 17, 557–562. [Google Scholar] [CrossRef]
- Devianto, H.; Desiandrin, T.; Radithia, D.; Susilo, D.H.; Alphania Rahniayu, A. Non-smoker and non-drinker farmer with oral squamous cell carcinoma. Acta Medica Philippina, 2019, 53. [Google Scholar] [CrossRef]
- Enriquez, B.A.; Tabaries, A.; Devauchelle, P.; Benet, J.J. The Environment: A Common Source of Exposure for Human Beings and Dogs: First French Case-Control Study for Testing the Use of Dogs as Sentinels for Cancers from Environmental Origins. Epidemiology, 2009, 20, S104–S105. [Google Scholar] [CrossRef]
- Beyond Pesticides. Available online: https://beyondpesticides.org/dailynewsblog/2020/06/pesticide-incident-prompts-dog-owner-warning-about-flea-and-tick-chemicals (accessed on 14 April 2023).
- Chen, D.; Li, J.; Zhao, Y.; Wu, Y. Human exposure of fipronil insecticide and the associated health risk. J. Agric. Food Chem. 2022, 70, 63–71. [Google Scholar] [CrossRef]
- Cleaveland, S.; Meslin, F.; Breiman, R. Dogs can play useful role as sentinel hosts for disease. Nature 2006, 440, 605. [Google Scholar] [CrossRef] [PubMed]
- Karimian, S.; Shekoohiyan, S.; Moussavi, G. Health and ecological risk assessment and simulation of heavy metal-contaminated soil of Tehran landfill. RSC advances 2021, 11, 8080–8095. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; Jeggo, M. The One Health approach—Why is it so important? Tropical medicine and infectious disease 2019, 4, 88. [Google Scholar] [CrossRef] [PubMed]
- Davitt, C.; Traub, R.; Batsukh, B.; Battur, B.; Pfeffer, M.; Wiethoelter, A.K. Knowledge of Mongolian veterinarians towards canine vector-borne diseases. One Health 2022, 15, 100458. [Google Scholar] [CrossRef] [PubMed]
- Balboni, A.; Mazzotta, E.; Boniotti, M.B.; Bertasio, C.; Bellinati, L.; Lucchese, L.; Batilani, M.; Ceglie, L.; Marchione, S.; Esposito, G.; Natale, A. Outbreak of Leptospira borgpetersenii serogroup Sejroe infection in kennel: The role of dogs as sentinel in specific environments. Int. J. Environ. Res. Public Health 2022, 19, 3906. [Google Scholar] [CrossRef] [PubMed]
- Orr, B.; Malik, R.; Westman, M.E.; Norris, J.M. Seroprevalence of Coxiella burnetii in pig-hunting dogs from north Queensland, Australia. Aust. Vet. J. 2022, 100, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Rust, J.H., Jr.; Miller, B.E.; Bahmanyar, M.; Marshall Jr, J.D.; Purnaveja, S.; Cavanaugh, D.C.; Hla, U.S.T. The role of domestic animals in the epidemiology of plague. II. Antibody to Yersinia pestis in sera of dogs and cats. Journal of infectious Diseases 1971, 124, 527–531. [Google Scholar] [CrossRef]
- Rajerison, M.; Dartevelle, S.; Ralafiarisoa, L.A.; Bitam, I.; Tuyet, D.T.N.; Andrianaivoarimanana, V.; Nato, F.; Rahalison, L. Development and evaluation of two simple, rapid immunochromatographic tests for the detection of Yersinia pestis antibodies in humans and reservoirs. PLoS Neglected Tropical Diseases 2009, 3, e421. [Google Scholar] [CrossRef]
- Henn, J.B.; Gabriel, M.W.; Kasten, R.W.; Brown, R.N.; Theis, J.H.; Foley, J.E.; Chomel, B.B. Gray foxes (Urocyon cinereoargenteus) as a potential reservoir of a Bartonella clarridgeiae-like bacterium and domestic dogs as part of a sentinel system for surveillance of zoonotic arthropod-borne pathogens in northern California. Journal of Clinical Microbiology 2007, 45, 2411–2418. [Google Scholar] [CrossRef]
- Davoust, B.; Leparc-Goffart, I.; Demoncheaux, J.P.; Tine, R.; Diarra, M.; Trombini, G.; Mediannikov, O.; Marié, J.L. Serologic surveillance for West Nile virus in dogs, Africa. Emerging infectious diseases 2014, 20, 1415. [Google Scholar] [CrossRef]
- Komar, N.; Panella, N.A.; Boyce, E. Exposure of Domestic Mammals to West Nile Virus during an Outbreak of Human Encephalitis, New York City, 1999. Emerging Infectious Diseases. 2001, 7, 736–738. [Google Scholar] [CrossRef] [PubMed]
- Kile, J.C.; Panella, N.A.; Komar, N.; Chow, C.C.; MacNeil, A.; Robbins, B.; Bunning, M.L. Serologic survey of cats and dogs during an epidemic of West Nile virus infection in humans. Journal of the American Veterinary Medical Association 2005, 226, 1349–1353. [Google Scholar] [CrossRef] [PubMed]
- Lan, D.; Ji, W.; Yu, D.; Chu, J.; Wang, C.; Yang, Z.; Hua, X. Serological evidence of West Nile virus in dogs and cats in China. Arch Virol. 2011, 156, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Morales, M.A.; Selmi, M.; Ludovisi, A.; et al. Hunting dogs as sentinel animals for monitoring infections with Trichinella spp. in wildlife. Parasites Vectors 2016, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Leighton, F.A.; Artsob, H.A.; Chu, M.C.; Olson, J.G. A serological survey of rural dogs and cats on the southwestern Canadian prairie for zoonotic pathogens. Canadian Journal of Public Health 2001, 92, 67–71. [Google Scholar] [CrossRef] [PubMed]
- 10 benefits of owning a pet. Available online: https://www.animalfriends.co.uk/dog/dog-blog/10-benefits-of-owning-a-pet (accessed on 31 March 2023).
- Moser, E.; McCulloch, M. Canine scent detection of human cancers: A review of methods and accuracy. Journal of Veterinary Behavior 2010, 5, 145–152. [Google Scholar] [CrossRef]
- Cavaco Silva, J.; Tavella, V.J. 2023, Can dogs detect cancer? Available online: https://www.medicalnewstoday.com/articles/323620 (accessed on 31 March 2023).
- Lippi, G.; Cervellin, G. Canine olfactory detection of cancer versus laboratory testing: myth or opportunity? Clinical chemistry and laboratory medicine 2012, 50, 435–439. [Google Scholar] [CrossRef]
- Dalziel, D.J.; Uthman, B.M.; Mcgorray, S.P.; Reep, R.L. Seizure-alert dogs: a review and preliminary study. Seizure 2003, 12, 115–120. [Google Scholar] [CrossRef]
- Strong, V.; Brown, S.; Huyton, M.; Coyle, H. Effect of trained Seizure Alert Dogs® on frequency of tonic–clonic seizures. Seizure, 2002, 11, 402–405. [Google Scholar] [CrossRef]
- Kiriakopoulos, E. Seizure Dogs, 2017. Available online: https://www.epilepsy.com/recognition/seizure-dogs (accessed on 3 January 2023).
- Maa, E. , Arnold, J., Ninedorf, K., & Olsen, H. Canine detection of volatile organic compounds unique to human epileptic seizure. Epilepsy & Behavior, 2021, 115, 107690. [Google Scholar] [CrossRef]
- Salas Garcia, M.C.; Schorr, A.R.; Arnold, W.; Fei, N.; Gilbert, J.A. Pets as a Novel Microbiome-Based Therapy. In Pets as Sentinels, Forecasters and Promoters of Human Health; Pastorinho, M., Sousa, A., Eds.; Springer: Cham, 2020. [Google Scholar] [CrossRef]
| Heavy metal/metalloid | Pets | Action | Authors | Human | Authors |
|---|---|---|---|---|---|
| Asbestos | Dog | Canine malignant mesothelioma Pleural mesothelioma more frecvently than pericardial and peritoneal origin) - poor prognostic. More common in males than females Pleural effusions, appear in special on old dog Symptoms: Tachypnoea and dyspnea Decrease in or loss of appetite Lethargy, difficulty moving, insomnia, depression, hematuria (blood in urine), hematochezia (bloody diarrhea), vomiting, enlarged abdomen and/or scrotum, excess fluid retention, heart failure, muffled heartbeat or breathing sounds, dehydration |
[14] [15] [16] |
Human mesothelioma Pleural mesothelioma more frecvently Peak incidence occurs in the 5th and 6th decades of life. Pleural effusions Cough, usually nonproductive, Dyspnea Chest pain Fatigue loss of appetite Pleural plaques Pleural thickening Sweating (profusely) Weight loss |
[17] [18] [19] |
| As | Dog Cats |
Ulcerative dermatitis Myocarditis Bladder cancer Chronic renal failure |
[20] [21] |
Hyperpigmentation and keratosis Ischemic heart diseases Renal diseses Bladder cancer, skin, lungs, liver, kidney cancer Kidney damage |
[22] [23] [24] |
| Cd | Dog Cats |
Disrupting male reproduction Impair pancreatic function Decrease the bone-formation rate Chronic renal failure sets in |
[25] [26] [27] |
Alter the reproductive sphere both from the hormonal point of view and the male reproductive organs Disturbances in calcium metabolism and the onset of osteopetrosis, osteomalacia Itai-Itai disease manifested by softening of the bones Kidney failure |
[28] [29] [30] |
| Pb | Dog Cats |
Functional disturbances of forebrain and cortical blindness Anemia Epileptic seizures It affects the bones by setting bone sclerosis. Myocarditis chronic Renal failure |
[31] |
Affects: central, peripheral, hematopoietic nervous system. Microcytic anemia Gastrointestinal disturbances Affect the renal system with the onset of renal failure. |
[32] [33] [34] |
| Hg | Cats | Neurological disturbances similar to those in Minamata disease manifested by: ataxia, weakness and loss of balance and motor incoordination | [35] [36] |
Affects nervous system with symptoms such as: uncontrollable tremors, muscle loss, slurred speech, tremors, partial blindness | [37] |
| Country | U.M | Heavy metals (mean ±SD) | Analyzed from | No. of samples | Species | Author | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| Pb | Cd | Cr | Hg | As | ||||||
| Korea | μg/ml | 0.68±0.19 | 0.21±0.01 | 0.66±0.15 | 1.10±0.49 | - | Serum | 204 | Dogs | [43] |
| Zambia | μg/L | 271.6 ± 226.9 | 1.5 ± 1.6 | 67.2 ± 75.4 | - | 5.2 ± 4.5 | Blood | 120 | Dogs | [44] |
| Italy (Campania) | mg/kg | 0.321±0.198 | 0.093±0.079 | - | 0.054±0.044 | - | Liver | 38 | Dogs | [45] |
| 0.293±0.231 | 0.259±0.238 | - | 0.040±0.021 | - | Kidney | |||||
| Italy (Naples) |
mg/Kg | 0.256±0.130 | 0.098±0.063 | - | - | - | Liver | 290 | Dogs | [46] |
| 0.147±0.081 | 0.302±0.212 | - | - | - | Kidney | |||||
| 0.268±0.107 | 0.101±0.054 | - | - | - | Liver | 88 | Cats | |||
| 0.189±0.102 | 0.355±0.144 | - | - | - | Kidney | |||||
| Poland (northwestern) |
2.829±3.490** 1.55±1.71** |
0.105±0.067** 0.096±0.074** |
0.0020±0.0013* 0.0027±0.0022** |
Cartilage with adjacent compact bone Spongy bone |
24 | Dogs | [47] | |||
| Italy (Sardinia- South) | ng/mL |
81.4 ± 16.6 | 52.2 ± 14.0 | - | - | 139 ± 39 | Ovaries | 26 | Cats | [48] |
| 20.4 ± 3.6 | 19.7 ± 4.0 | - | - | 21.7 ± 4.2 | Ovaries | 21 | Dogs | |||
| Italy (Sardinia North) |
ng/mL |
51.1 ± 17.9 | 26.4 ± 5.5 | - | - | 107 ± 61 | Ovaries | 14 | Cats | |
| 12.2 ± 5.2 | 12.2 ± 1.8 | - | - | 21.8 ± 3.9 | Ovaries | 24 | Dogs | |||
| Legend: U.M- Unit of measurement; ** higher values than in humans; * lower values than in humans | ||||||||||
| Country | U.M | Heavy metals (mean ±SD) | A.M. | No. of samples |
Species | Author | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pb | Cd | Cr | Hg | As | |||||||||||||||
| Macedonia | μg/kg | ||||||||||||||||||
| Veles | 930.15±516.03 | 54.28±12,77 | - | - | - | AAS | 11 | Dog | [54] | ||||||||||
| Bitola | 715.66±293.80 | 42.65±25.41 | - | - | - | 22 | Dog | ||||||||||||
| Prilep | 525.63±253.91 | 27.82±8.31 | - | - | - | 11 | Dog | ||||||||||||
| Macedonia | μg/kg | ||||||||||||||||||
| Delcevo | 579±478.29 | 68.57±59.95 | - | - | - | AAS | 18 | Dog | [55] | ||||||||||
| Probistip | 1061.38±564.02 | 26.86±23.30 | - | - | - | 20 | Dog | ||||||||||||
| Veles | 1099.02±593.01 | 171.54±179.53 | - | - | - | 17 | Dog | ||||||||||||
| Prilep | 370.57±288.39 | 21.65±10.64 | - | - | - | 18 | Dog | ||||||||||||
| Bitola | 687.05±482.82 | 66.04±73.78 | - | - | - | 21 | Dog | ||||||||||||
| Australia | mg kg-1 DW | 1.19±3.11 | - | 0.85 ± 1.42 | 0.13±0.11 | 0.08±0.06 | AAS | 36 | Dog | [56] | |||||||||
| Argentina | mg gDW-1 | - | - | - | - | 24 ± 2 | TXRF technique | - | Dog | [57] | |||||||||
| Portugal | μg g− 1 | 24±2.4 | TXRF | 50 | Dog | [58] | |||||||||||||
| Portugal | ng g-1 | - | - | - | 24.16 - 826.30 | TXRF technique | 26 | Dog | [59] | ||||||||||
| Poland | mg⋅kg−1 | - | - | - | 0.025±0.020 | AAS | 85 | Cat | [60] | ||||||||||
| Iran | ng/g DW | - | - | - | AAS | 40 | Wild cats | [61] | |||||||||||
| North-west | - | - | - | 735±456 | |||||||||||||||
| North | - | - | - | 568±381 692± 577 |
|||||||||||||||
| Center | - | - | - | 1303±1306 376±162 |
|||||||||||||||
| North-east | - | - | - | 1517±1888 | |||||||||||||||
| West | - | - | - | 231±89 | |||||||||||||||
| Japan | ppm | - | - | - | 7.40 ±2.93 | AAS | 12 | Male cat | [62] | ||||||||||
| - | - | - | 7.45±1.28 | 29 | Femele cat | ||||||||||||||
| - | - | - | 0.99 ± 0.23 | 16 | Male dog | ||||||||||||||
| - | - | - | 0.66 ±0.10 | 18 | Femele dog | ||||||||||||||
| Alaska | ng/g | 1822.4±1747 | - | Sled dog | [63] | ||||||||||||||
| Legend: U.M- Unit of measurement; DW- dry weight, AAS-atomic absorption spectrometry, A.M.- Analysis method¸ TXRF -Total Reflection X-ray Fluorescence Analysis | |||||||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
