Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The Genetic Basis of Probable REM Sleep Behavior Disorder in Parkinson’s Disease

Version 1 : Received: 27 June 2023 / Approved: 28 June 2023 / Online: 28 June 2023 (14:07:02 CEST)

A peer-reviewed article of this Preprint also exists.

Perez-Lloret, S.; Chevalier, G.; Bordet, S.; Barbar, H.; Capani, F.; Udovin, L.; Otero-Losada, M. The Genetic Basis of Probable REM Sleep Behavior Disorder in Parkinson’s Disease. Brain Sci. 2023, 13, 1146. Perez-Lloret, S.; Chevalier, G.; Bordet, S.; Barbar, H.; Capani, F.; Udovin, L.; Otero-Losada, M. The Genetic Basis of Probable REM Sleep Behavior Disorder in Parkinson’s Disease. Brain Sci. 2023, 13, 1146.

Abstract

Patients with Parkinson’s Disease (PD) experience REM sleep behavior disorder (RBD) more frequently than healthy controls. RBD is associated with torpid disease evolution. To test the hypothesis that differential genetic signatures might contribute to the torpid disease evolution in PD patients with RBD. We compared the rate of genetic mutations in PD patients with or without probable RBD. Patients with a clinical diagnosis of PD in the Parkinson’s Progression Markers Initiative (PPMI) database entered the study. We excluded those with missing data or a diagnosis change over the first five years from the initial PD diagnosis. Probable RBD (pRBD) was confirmed by a REM Sleep Behavior Disorder Screening Questionnaire score >5 points. Logistic regression and Machine Learning (ML) algorithms were used to relate Single Nucleotide Polymorphism (SNPs) in PD-related genes with pRBD. We included 330 PD patients fulfilling all inclusion and exclusion criteria. The final logistic multivariate model revealed that the following SNPs increased the risk of pRBD: GBA_N370S_rs76763715 (OR, 95% CI: 3.38, 1.45-7.93), SNCA_A53T_rs104893877 (8.21, 2.26-36.34), ANK2. CAMK2D_rs78738012 (2.12, 1.08-4.10), and ZNF184_rs9468199 (1.89, 1.08-3.33). Conversely, SNP COQ7. SYT17_rs11343 reduced pRBD risk (0.36, 0.15-0.78). The ML algorithms led to similar results. The predictive models were highly specific (95-99%) but lacked sensitivity (9-39%). We found a distinctive genetic signature for pRBD in PD. The high specificity and low sensitivity of the predictive models suggest that genetic mutations are necessary but not sufficient to develop RBD in PD. Additional investigations are needed.

Keywords

single nucleotide polymorphism; Parkinson’s disease; REM-sleep Behaviour Disorders; pathophysiology; PD-related variants

Subject

Medicine and Pharmacology, Neuroscience and Neurology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.