Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Bioresponsive Gelatin-Hyaluronic Acid Hydrogels for 3D Bioprinting

Version 1 : Received: 28 June 2023 / Approved: 28 June 2023 / Online: 29 June 2023 (02:20:28 CEST)

A peer-reviewed article of this Preprint also exists.

Khatun, M.R.; Bhattacharyya, A.; Gunbayar, M.; Jung, M.; Noh, I. Study on Bioresponsive Gelatin-Hyaluronic Acid-Genipin Hydrogel for High Cell-Density 3D Bioprinting. Gels 2023, 9, 601. Khatun, M.R.; Bhattacharyya, A.; Gunbayar, M.; Jung, M.; Noh, I. Study on Bioresponsive Gelatin-Hyaluronic Acid-Genipin Hydrogel for High Cell-Density 3D Bioprinting. Gels 2023, 9, 601.

Abstract

Development of bioresponsive extrudable hydrogels for 3D bioprinting is imperative to address the growing demand for scaffold design and efficient and reliable methods of tissue engineering and regenerative medicine. This study proposed genipin-crosslinked gelatin-hyaluronic acid hydrogel bioink with different amounts of gelatin tailored for 3D bioprinting, focusing on high cell density loading and less artificial extra-cellular matrix (ECM) effect, as well as exploring their potential applications in tissue engineering. The bioresponsiveness of these hydrogel scaffolds was successfully evaluated in different physiological conditions. 3D and four-axis printing of complex structures such as shapes of hollow tube, star, pyramid, and four-axis tubular scaffolds prove the hydrogel’s high extrusion ability and post-printing shape fidelity. Cytocompatibility and high cell density 3D bioprinting using this moderately stable hydrogel exhibit high potential for precise cell-delivery modes in tissue engineering as well as regenerative medicine.

Keywords

Bioresponsive; gelatin; hyaluronic acid; bioprinting; cell-delivery; tissue engineering

Subject

Chemistry and Materials Science, Biomaterials

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.