Submitted:
27 June 2023
Posted:
28 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Systematic literature review
2.2. Data presentation, extraction and endpoints
3. Results
3.1. Results - systematic literature review
| Polverelli et al., 2018, [25], (n=77) | Oostenbrink et al., 2019, [26], (n=58) | Liu et al., 2021, [27], (n=214 – total, n=67 – selected for ATG-T, ATG-G)* | Butera et al., 2021, [29], (n=395) | Wang et al., 2023, [28], (n=186) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Type of ATG utilised | ATG-T | ATG-G | ATG-T | ATG-G | ATG-T | ATG-G | ATG-T | ATG-T | ATG-G | ATG-T |
| Number of patients | n=31 (40%) | n=46 (60%) | n=42 (72%) High-dose n=24, Low-dose n=18 |
n=16 (28%) High-dose n=9 Low-dose n=7 |
n=44 (66%) | n=23 (34%) | n=197 (50%) | n=198 (50%) | n=107 (58%) | n=79 (42%) |
| Age (years), median (range) | 45 (17-61) | 48 (18-66) |
9 (1-18) |
6 (1-17) | 27 (6-50) | 26 (3-52) | 52,4 (20,7-69,4) | 50,4 (20,7-66,8) | 25 (3-59) | 30 (3-65) |
| Sex, (%) Male Female |
n=23 (74%) n=8 (26%) |
n=29 (63%) n=19 (37%) |
NR | NR | n=27 (61,36%) n=17 (38,64%) |
n=13 (56,52%) n=10 (43,48%) |
n=99 (50%) n=98 (50%) |
n=117 (59%) n=81 (41%) |
n=63 (58,9%) n=44 (41,1%) |
n=50 (63,3%) n=29 (36,7%) |
| Dose of ATG (total, mg/kg) | 7,5 mg/kg | 30 mg/kg | High-dose 10 mg/kg Low-dose 6-8 mg/kg |
High-dose 60 mg/kg Low-dose 45 mg/kg |
MRD 12,5 mg/kg Haplo 10 mg/kg |
MRD 25 mg/kg Haplo 20 mg/kg |
5 mg/kg | 6-7,5 mg/kg | 20 mg/kg | 10 mg/kg |
| Follow-up (days/months), median (range) | 20 (1-88) months | 22 (2-60) months | NR | NR | 47,65 (0,50-186,78) months | 44,34 (3,0-76,15) months | 81,5 (50,2-119,3) months | 81,5 (50,2-119,3) months | NR | NR |
| Diagnosis | Acute leukemia n=17 (56%) MDS n=1 (3%) MPNs n=1 (3%) Lymphoproliferative neoplasms n=11 (35%) Others n=1 (3%) |
Acute leukemia n=24 (52%) MDS n=7 (15%) MPNs n=2 (5%) Lymphoproliferative neoplasms n=12 (26%) Others n=1 (2%) |
ALL n=17 (40%) AML n=25 (60%) |
ALL n=16 (100%) | Severe aplastic anemia | Severe aplastic anemia | ALL n=23 (11,7%) AML/MDS n=111 (56,3%) MPN n=14 (7,1%) LPD n=49 (24,9%) |
ALL n=29 (14,7%) AML/MDS n=88 (44,4%) MPN n=19 (9,6%) LPD n=62 (31,3%) |
ALAL n=4 (3,7%) ALL n=29 (27,1%) AML n=42 (39,3%) CLL n=1 (0,9%) CML n=23 (21,5%) MDS n=7 (6,5%) NHL n=1 (0,9%) |
ALAL n=4 (5,1%) ALL n=16 (20,3%) AML n=43 (54,4%) CLL n=0 (0%) CML n=6 (7,6%) MDS n=6 (7,6%) NHL n=4 (5,1%) |
| Conditioning regimen | MAC n=16 (52%) RIC n=15 (48%) |
MAC n=22 (48%) RIC n=24 (52%) |
NR | NR |
FLU + CY5 n=15 (34,01%) BU + CY5 n=29 (65,91%) |
FLU + CY5 n= 4 (17,39%) BU + CY5 n=19 (82,61%) |
MAC n=154 (78,2%) RIC n=43 (21,8%) |
MAC n=107 (54%) RIC n=91 (46%) |
TBI/CY1 n=10 (9,3%) BU/CY2 n=60 (56,1%) Haplo3 n=30 (28,0%) FB34 n=6 (5,6%) Other n=1 (0,9%) |
TBI/CY1 n=3 (3,8%) BU/CY2 n=3 (3,8%) Haplo3 n=21 (26,6%) FB34 n=6 (7,6%) Other n=0 (0%) |
| Stem cell source, (%) BM PBSC |
BM n=5 (16%) PBSC n=26 (84%) |
BM n=5 (11%) PBSC n=41 (89%) |
BM n=34 (81%) PBSC n=8 (19%) |
BM n=14 (87%) PBSC n=2 (13%) |
BM + PBSC n=28 (63,64%) BM n=10 (22,73%) PBSC n=6 (13,64%) |
BM + PBSC n=18 (78,26%) BM n=2 (8,7%) PBSC n=3 (13,04%) |
BM n=25 (12,7%) PBSC n=172 (87,3%) |
BM n=30 (15,15%) PBSC n=168 (84,85%) |
NR | NR |
| Donor | MUD | MUD | MUD n=30 (71%) MMUD n=12 (29%) |
MUD n=13 (81%) MMUD n=3 (19%) |
MRD n=13 (29,55%) Haplo n=28 (63,64%) URD n=3 (6,82%) |
MRD n=6 (26,09%) Haplo n=16 (69,57%) URD n=1 (4,35%) |
MUD | MUD | MUD n=69 (64,5%) MMUD n=38 (35,5%) |
MUD n=45 (57,0%) MMUD n=34 (43,0%) |
| Endpoint | Polverelli et al., 2018 [25], (n=77) | Oostenbrink et al., 2019, [26], (n=58) | Liu et al., 2021, [27], (n=214 – total, n=67 – selected for ATG-T, ATG-G)* | Butera et al., 2021, [29], (n=395) | Wang et al., 2023, [28], (n=186) | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Type of ATG | ATG-T | ATG-G | ATG-T | ATG-G | ATG-T | ATG-G | ATG-T (5mg/kg total) |
ATG-T (6-7,5mg/kg total) |
ATG-G | ATG-T |
| Chronic GvHD | n=8 (31%) p=0,77 |
n=10 (26%) p=0,77 |
High-dose n=6 (25%) Low-dose n=3 (17%) p=0,97 |
n=2 (13%) p=0,97 |
26,83% p=0,704 |
22,73% p=0,704 |
Moderate-severe cGvHD 17,4% p=0,34 |
Moderate-severe cGvHD 20,3% p=0,34 |
43,9% p=0,279 |
28,8% p=0,279 |
| Acute GvHD grade II-IV | n=13 (42%) | n=20 (43%) | High-dose n=2 (8%) Low-dose n=6 (33%) |
n=6 (38%) | 20,45% p=0,948 |
21,74% p=0,948 |
28,6% p=0,18 |
33,9% p=0,18 |
8,4% p=0,583 |
6,3% p=0,583 |
| Acute GvHD grade III-IV | n=3 (10%) p=0,39 |
n=2 (4%) p=0,39 |
High-dose n=1 (4%) Low-dose n=4 (22%) p=0,025 |
n=0 (0%) p=0,025 |
2,27% p=0,026 |
17,39% p=0,026 |
10,2% p=0,26 |
13,7% p=0,26 |
NR | NR |
| OS | 5-years period n=35 (43%) p=0,58 |
High-dose 62 months (1-92) Low-dose 33 months (4-53) p=0,15 |
34 months (4-84) p=0,15 |
5-year period 86,4% p=0,245 |
5-year period 95,7% p=0,245 |
56,6% p=0,052 |
46,3 % p=0,052 |
75% p=0,645 |
80,9% p=0,645 |
|
| TRM | 5 years period n=18 (24,5%) p=0,54 |
High-dose n=1 Low-dose n=0 |
n=0 | 11,36% p=0,614 |
4,35% p=0,614 |
NR | NR | NR | NR | |
| NRM | 5 years period n=19 (25,65%) 45% |
NR | NR | NR | NR | 5-year period 27,9% p=0,094 |
5-year period 21,5% p=0,094 |
10,4% p=0,402 |
15% p=0,402 |
|
| GRFS |
2 years period 41.9% p=0,042 |
2 years period 67.4% p=0,042 |
NR | NR | GVHD-free, failure-free survival 77,3% p=0,986 |
GVHD-free, failure-free survival 78,3% p=0,986 |
43,1% p=0,014 |
32,4% p=0,014 |
33,5% p=0,109 |
52,8% p=0,109 |
| LFS | NR | NR | NR | NR | NR | NR | 46,3% p=0,051 |
38,6% p=0,051 |
NR | NR |
| Relapse | 2 years period 32% p=0,41 |
2 years period 38% p=0,41 |
High-dose n=4 (16%) Low-dose n=4 (22%) p=0,54 |
n=3 (18%) p=0,54 |
NR | NR | 5-year period 31,7% p=0,66 |
5-year period 33,6% p=0,66 |
33,5% p=0,153 |
19,4% p=0,153 |
| CMV reactivation | n=22 (71%) p=0,23 |
n=26 (57%) p=0,23 |
High-dose n=5 Low-dose n=7 p=0,62 |
n=4 p=0,62 |
NR | NR | Day 100 32,7% p=0,3 |
Day 100 35,6% p=0,3 |
29,9% p<0,001 |
64,6% p<0,001 |
| EBV reactivation | NR | NR | High-dose n=7 Low-dose n=4 p=0,28 |
n=2 p=0,28 |
NR | NR | 10,7% p=0,95 |
11,1% p=0,95 |
NR | NR |
| Infections overall | n=30 (97%) p=1 |
n=45 (98%) p=1 |
NR | NR | 59,09% p=0,84 |
56,52% p=0,84 |
NR | NR | NR | NR |
4. Outcomes
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AML | acute myeloid leukaemia |
| ALAL | acute leukaemia with ambiguous lineage |
| ALL | acute lymphoblastic leukaemia |
| allo-HCT | allogeneic hematopoietic stem cell transplantation |
| ATG-G | Grafalon |
| ATG-T | Thymoglobulin |
| h-ATG | horse ATG |
| p-ATG | porcine ATG |
| BM | bone marrow |
| BU | busulfan |
| CIs | confidence intervals |
| CML | chronic myeloid leukaemia |
| CMV | cytomegalovirus |
| CNIs | calcineurin inhibitors |
| CY | cyclophosphamide |
| EBV | Epstein-Barr virus |
| FLU | fludarabine |
| GRFS | graft-versus-host/relapse-free survival |
| GvHD | graft-versus-host disease |
| aGvHD | acute graft-versus-host disease |
| cGvHD | chronic graft-versus-host disease |
| GvL | graft-versus-leukaemia |
| Haplo | haploidentical donor |
| HRs | hazard ratios |
| LFS | leukaemia-free survival |
| MAC | myeloablative conditioning |
| MDS | myelodysplastic syndrome |
| MRD | matched related donor |
| MMRD | mismatched related donor |
| MUD | matched unrelated donor |
| MMUD | mismatched unrelated donor |
| MPNs | myeloproliferative neoplasms, |
| MTX | methotrexate |
| NMA | nonmyeloablative conditioning |
| NR | not reported |
| NRM | non-relapse mortality |
| OS | overall survival |
| PBSC | peripheral blood stem cells |
| r-ATG | rabbit anti-thymocyte globulin |
| RCTs | randomised controlled trials |
| RIC | reduced intensity conditioning |
| TRM | transplantation-related mortality |
| URD | unrelated donor |
References
- Wingard, J.R.; Majhail, N.S.; Brazauskas, R.; Wang, Z.; Sobocinski, K.A.; Jacobsohn, D.; Sorror, M.L.; Horowitz, M.M.; Bolwell, B.; Rizzo, J.D.; et al. Long-Term Survival and Late Deaths after Allogeneic Hematopoietic Cell Transplantation. J Clin Oncol 2011, 29, 2230–2239. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.J.; Counts, G.W.; Appelbaum, F.R.; Lee, S.J.; Sanders, J.E.; Deeg, H.J.; Flowers, M.E.D.; Syrjala, K.L.; Hansen, J.A.; Storb, R.F.; et al. Life Expectancy in Patients Surviving More than 5 Years after Hematopoietic Cell Transplantation. J Clin Oncol 2010, 28, 1011–1016. [Google Scholar] [CrossRef] [PubMed]
- Pidala, J.; Kurland, B.; Chai, X.; Majhail, N.; Weisdorf, D.J.; Pavletic, S.; Cutler, C.; Jacobsohn, D.; Palmer, J.; Arai, S.; et al. Patient-Reported Quality of Life Is Associated with Severity of Chronic Graft-versus-Host Disease as Measured by NIH Criteria: Report on Baseline Data from the Chronic GVHD Consortium. Blood 2011, 117, 4651–4657. [Google Scholar] [CrossRef]
- Watkins, B.; Williams, K.M. Controversies and Expectations for the Prevention of GVHD: A Biological and Clinical Perspective. Front Immunol 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Arora, M.; Wang, T.; Spellman, S.R.; He, W.; Couriel, D.R.; Urbano-Ispizua, A.; Cutler, C.S.; Bacigalupo, A.A.; Battiwalla, M.; et al. Increasing Incidence of Chronic Graft-versus-Host Disease in Allogeneic Transplantation: A Report from the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant 2015, 21, 266–274. [Google Scholar] [CrossRef]
- Flowers, M.E.D.; Inamoto, Y.; Carpenter, P.A.; Lee, S.J.; Kiem, H.P.; Petersdorf, E.W.; Pereira, S.E.; Nash, R.A.; Mielcarek, M.; Fero, M.L.; et al. Comparative Analysis of Risk Factors for Acute Graft-versus-Host Disease and for Chronic Graft-versus-Host Disease According to National Institutes of Health Consensus Criteria. Blood 2011, 117, 3214–3219. [Google Scholar] [CrossRef]
- Anasetti, C.; Logan, B.R.; Lee, S.J.; Waller, E.K.; Weisdorf, D.J.; Wingard, J.R.; Cutler, C.S.; Westervelt, P.; Woolfrey, A.; Couban, S.; et al. Peripheral-Blood Stem Cells versus Bone Marrow from Unrelated Donors. N Engl J Med 2012, 367, 1487–1496. [Google Scholar] [CrossRef]
- Zeiser, R.; Blazar, B.R. Acute Graft-versus-Host Disease - Biologic Process, Prevention, and Therapy. N Engl J Med 2017, 377, 2167–2179. [Google Scholar] [CrossRef]
- Zeiser, R.; Blazar, B.R. Pathophysiology of Chronic Graft-versus-Host Disease and Therapeutic Targets. N Engl J Med 2017, 377, 2565–2579. [Google Scholar] [CrossRef]
- Ruutu, T.; Van Biezen, A.; Hertenstein, B.; Henseler, A.; Garderet, L.; Passweg, J.; Mohty, M.; Sureda, A.; Niederwieser, D.; Gratwohl, A.; et al. Prophylaxis and Treatment of GVHD after Allogeneic Haematopoietic SCT: A Survey of Centre Strategies by the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 2012, 47, 1459–1464. [Google Scholar] [CrossRef]
- Chen, X.; Wei, J.; Huang, Y.; He, Y.; Yang, D.; Zhang, R.; Jiang, E.; Ma, Q.; Zhai, W.; Yao, J.; et al. Effect of Antithymocyte Globulin Source on Outcomes of HLA-Matched Sibling Allogeneic Hematopoietic Stem Cell Transplantation for Patients with Severe Aplastic Anemia. Biol Blood Marrow Transplant 2018, 24, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, C.; Zhuang, J.; Zou, N.; Xu, Y.; Zhang, W.; Li, J.; Duan, M.; Zhu, T.; Cai, H.; et al. Long-Term Follow-up Study of Porcine Anti-Human Thymocyte Immunoglobulin Therapy Combined with Cyclosporine for Severe Aplastic Anemia. Eur J Haematol 2016, 96, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Scheinberg, P.; Nunez, O.; Weinstein, B.; Scheinberg, P.; Biancotto, A.; Wu, C.O.; Young, N.S. Horse versus Rabbit Antithymocyte Globulin in Acquired Aplastic Anemia. N Engl J Med 2011, 365, 430–438. [Google Scholar] [CrossRef]
- Kekre, N.; Zhang, Y.; Zhang, M.J.; Carreras, J.; Ahmed, P.; Anderlini, P.; Atta, E.H.; Ayas, M.; Boelens, J.J.; Bonfim, C.; et al. Effect of Antithymocyte Globulin Source on Outcomes of Bone Marrow Transplantation for Severe Aplastic Anemia. Haematologica 2017, 102, 1291–1298. [Google Scholar] [CrossRef]
- Baron, F.; Mohty, M.; Blaise, D.; Socié, G.; Labopin, M.; Esteve, J.; Ciceri, F.; Giebel, S.; Gorin, N.C.; Savani, B.N.; et al. Anti-Thymocyte Globulin as Graft-versus-Host Disease Prevention in the Setting of Allogeneic Peripheral Blood Stem Cell Transplantation: A Review from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 2017, 102, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Mohty, M. Mechanisms of Action of Antithymocyte Globulin: T-Cell Depletion and Beyond. Leukemia 2007, 21, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Popow, I.; Leitner, J.; Majdic, O.; J. Kovarik, J.; D. Saemann, M.; Zlabinger, G.J.; Steinberger, P. Assessment of Batch to Batch Variation in Polyclonal Antithymocyte Globulin Preparations. Transplantation 2012, 93, 32–40. [Google Scholar] [CrossRef]
- Popow, I.; Leitner, J.; Grabmeier-Pfistershammer, K.; Majdic, O.; Zlabinger, G.J.; Kundi, M.; Steinberger, P. A Comprehensive and Quantitative Analysis of the Major Specificities in Rabbit Antithymocyte Globulin Preparations. Am J Transplant 2013, 13, 3103–3113. [Google Scholar] [CrossRef]
- Servais, S.; Menten-Dedoyart, C.; Beguin, Y.; Seidel, L.; Gothot, A.; Daulne, C.; Willems, E.; Delens, L.; Humblet-Baron, S.; Hannon, M.; et al. Impact of Pre-Transplant Anti-T Cell Globulin (ATG) on Immune Recovery after Myeloablative Allogeneic Peripheral Blood Stem Cell Transplantation. PLoS One 2015, 10. [Google Scholar] [CrossRef]
- Bosch, M.; Dhadda, M.; Hoegh-Petersen, M.; Liu, Y.; Hagel, L.M.; Podgorny, P.; Ugarte-Torres, A.; Khan, F.M.; Luider, J.; Auer-Grzesiak, I.; et al. Immune Reconstitution after Anti-Thymocyte Globulin-Conditioned Hematopoietic Cell Transplantation. Cytotherapy 2012, 14, 1258–1275. [Google Scholar] [CrossRef]
- Bonifazi, F.; Rubio, M.T.; Bacigalupo, A.; Boelens, J.J.; Finke, J.; Greinix, H.; Mohty, M.; Nagler, A.; Passweg, J.; Rambaldi, A.; et al. Rabbit ATG/ATLG in Preventing Graft-versus-Host Disease after Allogeneic Stem Cell Transplantation: Consensus-Based Recommendations by an International Expert Panel. Bone Marrow Transplant 2020, 55, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Walker, I.; Panzarella, T.; Couban, S.; Couture, F.; Devins, G.; Elemary, M.; Gallagher, G.; Kerr, H.; Kuruvilla, J.; Lee, S.J.; et al. Addition of Anti-Thymocyte Globulin to Standard Graft-versus-Host Disease Prophylaxis versus Standard Treatment Alone in Patients with Haematological Malignancies Undergoing Transplantation from Unrelated Donors: Final Analysis of a Randomised, Open-Label, Multicentre, Phase 3 Trial. Lancet Haematol 2020, 7, e100–e111. [Google Scholar] [CrossRef] [PubMed]
- El-Cheikh, J.; Devillier, R.; Dulery, R.; Massoud, R.; Al Chami, F.; Ghaoui, N.; Moukalled, N.; Pagliardini, T.; Marino, F.; Malard, F.; et al. Impact of Adding Antithymocyte Globulin to Posttransplantation Cyclophosphamide in Haploidentical Stem-Cell Transplantation. Clin Lymphoma Myeloma Leuk 2020, 20, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Gagelmann, N.; Ayuk, F.; Wolschke, C.; Kröger, N. Comparison of Different Rabbit Anti-Thymocyte Globulin Formulations in Allogeneic Stem Cell Transplantation: Systematic Literature Review and Network Meta-Analysis. Biol Blood Marrow Transplant 2017, 23, 2184–2191. [Google Scholar] [CrossRef]
- Polverelli, N.; Malagola, M.; Turra, A.; Skert, C.; Perucca, S.; Chiarini, M.; Cattina, F.; Rambaldi, B.; Cancelli, V.; Morello, E.; et al. Comparative Study on ATG-Thymoglobulin versus ATG-Fresenius for the Graft-versus-Host Disease (GVHD) Prophylaxis in Allogeneic Stem Cell Transplantation from Matched Unrelated Donor: A Single-Centre Experience over the Contemporary Years. Leuk Lymphoma 2018, 59, 2700–2705. [Google Scholar] [CrossRef]
- Oostenbrink, L.V.E.; Jol-Van Der Zijde, C.M.; Kielsen, K.; Jansen-Hoogendijk, A.M.; Ifversen, M.; Müller, K.G.; Lankester, A.C.; Van Halteren, A.G.S.; Bredius, R.G.M.; Schilham, M.W.; et al. Differential Elimination of Anti-Thymocyte Globulin of Fresenius and Genzyme Impacts T-Cell Reconstitution After Hematopoietic Stem Cell Transplantation. Front Immunol 2019, 10. [Google Scholar] [CrossRef]
- Liu, L.; Xu, G.; Zhang, Y.; Jiao, W.; Lei, M.; Zhou, H.; Wang, Q.; Qiu, H.; Tang, X.; Han, Y.; et al. Comparison of 2 Different Rabbit Anti-Thymocyte Globulin (r-ATG) Preparations: Thymocyte r-ATG versus T Lymphoblast Cell Line r-ATG in Allogeneic Hematopoietic Stem Cell Transplantation for Acquired Severe Aplastic Anemia: Propensity Score-Matched Analysis. Transplant Cell Ther 2021, 27. [Google Scholar] [CrossRef]
- Wang, L.; Kong, P.; Zhang, C.; Gao, L.; Zhu, L.; Liu, J.; Gao, S.; Chen, T.; Liu, H.; Yao, H.; et al. Outcomes of Patients with Hematological Malignancies Who Undergo Unrelated Donor Hematopoietic Stem Cell Transplantation with ATG-Fresenius versus ATG-Genzyme. Ann Hematol 2023, 102. [Google Scholar] [CrossRef]
- Butera, S.; Cerrano, M.; Brunello, L.; Dellacasa, C.M.; Faraci, D.G.; Vassallo, S.; Mordini, N.; Sorasio, R.; Zallio, F.; Busca, A.; et al. Impact of Anti-Thymocyte Globulin Dose for Graft-versus-Host Disease Prophylaxis in Allogeneic Hematopoietic Cell Transplantation from Matched Unrelated Donors: A Multicenter Experience. Ann Hematol 2021, 100, 1837–1847. [Google Scholar] [CrossRef]
- Lee, S.J.; Logan, B.; Westervelt, P.; Cutler, C.; Woolfrey, A.; Khan, S.P.; Waller, E.K.; Maziarz, R.T.; Wu, J.; Shaw, B.E.; et al. Comparison of Patient-Reported Outcomes in 5-Year Survivors Who Received Bone Marrow vs Peripheral Blood Unrelated Donor Transplantation: Long-Term Follow-up of a Randomized Clinical Trial. JAMA Oncol 2016, 2, 1583–1589. [Google Scholar] [CrossRef]
- Kumar, A.; Reljic, T.; Hamadani, M.; Mohty, M.; Kharfan-Dabaja, M.A. Antithymocyte Globulin for Graft-versus-Host Disease Prophylaxis: An Updated Systematic Review and Meta-Analysis. Bone Marrow Transplant 2019, 54, 1094–1106. [Google Scholar] [CrossRef]
- Fang, S.; Wang, N.; Wang, L.; Du, J.; Yang, J.; Wen, Y.; Wei, Y.; Qian, K.; Wang, H.; Jiao, Y.; et al. Reduced Risk of Chronic Graft-Versus-Host Disease (CGVHD) by Rabbit Anti-Thymocyte Globulin (ATG) in Patients Undergoing Matched Sibling Donor Transplantation in Hematological Malignancies. Ann Transplant 2022, 27. [Google Scholar] [CrossRef]
- Arcuri, L.J.; Kerbauy, M.N.; Kerbauy, L.N.; Santos, F.P. de S.; Ribeiro, A.A.F.; Hamerschlak, N. ATG in HLA-Matched, Peripheral Blood, Hematopoietic Cell Transplantation in Acute Myeloid Leukemia and Myelodysplastic Syndrome: A Secondary Analysis of a CIBMTR Database. Transplant Cell Ther 2023, 29, 40.e1–40.e4. [Google Scholar] [CrossRef]
- Kröger, N.; Solano, C.; Wolschke, C.; Bandini, G.; Patriarca, F.; Pini, M.; Nagler, A.; Selleri, C.; Risitano, A.; Messina, G.; et al. Antilymphocyte Globulin for Prevention of Chronic Graft-versus-Host Disease. N Engl J Med 2016, 374, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Baron, F.; Galimard, J.E.; Labopin, M.; Yakoub-Agha, I.; Niittyvuopio, R.; Kröger, N.; Griskevicius, L.; Wu, D.; Forcade, E.; Richard, C.; et al. Allogeneic Peripheral Blood Stem Cell Transplantation with Anti-Thymocyte Globulin versus Allogeneic Bone Marrow Transplantation without Anti-Thymocyte Globulin. Haematologica 2020, 105, 1138–1146. [Google Scholar] [CrossRef]
- Dou, L.; Hou, C.; Ma, C.; Li, F.; Gao, X.; Huang, W.; Wang, S.; Gao, C.; Yu, L.; Liu, D. Reduced Risk of Chronic GVHD by Low-Dose RATG in Adult Matched Sibling Donor Peripheral Blood Stem Cell Transplantation for Hematologic Malignancies. Ann Hematol 2020, 99, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Jo, T.; Matsui, H.; Kondo, T.; Takaori-Kondo, A. Efficacy of Antithymocyte Globulin for Allogeneic Hematopoietic Cell Transplantation: A Systematic Review and Meta-Analysis. Leuk Lymphoma 2017, 58, 1840–1848. [Google Scholar] [CrossRef]
- Yuan, J.; Pei, R.; Su, W.; Cao, J.; Lu, Y. Meta-Analysis of the Actions of Antithymocyte Globulin in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation. Oncotarget 2017, 8, 10871–10882. [Google Scholar] [CrossRef] [PubMed]
- Soiffer, R.J.; Kim, H.T.; McGuirk, J.; Horwitz, M.E.; Johnston, L.; Patnaik, M.M.; Rybka, W.; Artz, A.; Porter, D.L.; Shea, T.C.; et al. Prospective, Randomized, Double-Blind, Phase III Clinical Trial of Anti-T-Lymphocyte Globulin to Assess Impact on Chronic Graft-Versus-Host Disease-Free Survival in Patients Undergoing HLA-Matched Unrelated Myeloablative Hematopoietic Cell Transplantation. J Clin Oncol 2017, 35, 4003–4011. [Google Scholar] [CrossRef]
- Bonini, C.; Peccatori, J.; Stanghellini, M.T.L.; Vago, L.; Bondanza, A.; Cieri, N.; Greco, R.; Bernardi, M.; Corti, C.; Oliveira, G.; et al. Haploidentical HSCT: A 15-Year Experience at San Raffaele. Bone Marrow Transplant 2015, 50 Suppl 2, S67–S71. [Google Scholar] [CrossRef]
- Bartolomeo, P. Di; Santarone, S.; De Angelis, G.; Picardi, A.; Cudillo, L.; Cerretti, R.; Adorno, G.; Angelini, S.; Andreani, M.; De Felice, L.; et al. Haploidentical, Unmanipulated, G-CSF-Primed Bone Marrow Transplantation for Patients with High-Risk Hematologic Malignancies. Blood 2013, 121, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fu, H.X.; Liu, D.H.; Xu, L.P.; Zhang, X.H.; Chang, Y.J.; Chen, Y.H.; Wang, F.R.; Sun, Y.Q.; Tang, F.F.; et al. Influence of Two Different Doses of Antithymocyte Globulin in Patients with Standard-Risk Disease Following Haploidentical Transplantation: A Randomized Trial. Bone Marrow Transplant 2014, 49, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Marty, F.M.; Ljungman, P.; Chemaly, R.F.; Maertens, J.; Dadwal, S.S.; Duarte, R.F.; Haider, S.; Ullmann, A.J.; Katayama, Y.; Brown, J.; et al. Letermovir Prophylaxis for Cytomegalovirus in Hematopoietic-Cell Transplantation. N Engl J Med 2017, 377, 2433–2444. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Hieber, M.; Schwarck, S.; Stroux, A.; Ganepola, S.; Reinke, P.; Thiel, E.; Uharek, L.; Blau, I.W. Immune Reconstitution and Cytomegalovirus Infection after Allogeneic Stem Cell Transplantation: The Important Impact of in Vivo T Cell Depletion. Int J Hematol 2010, 91, 877–885. [Google Scholar] [CrossRef]
- Walker, I.; Panzarella, T.; Couban, S.; Couture, F.; Devins, G.; Elemary, M.; Gallagher, G.; Kerr, H.; Kuruvilla, J.; Lee, S.J.; et al. Pretreatment with Anti-Thymocyte Globulin versus No Anti-Thymocyte Globulin in Patients with Haematological Malignancies Undergoing Haemopoietic Cell Transplantation from Unrelated Donors: A Randomised, Controlled, Open-Label, Phase 3, Multicentre Trial. Lancet Oncol 2016, 17, 164–173. [Google Scholar] [CrossRef]
- Bacigalupo, A.; Lamparelli, T.; Bruzzi, P.; Guidi, S.; Alessandrino, P.E.; Di Bartolomeo, P.; Oneto, R.; Bruno, B.; Barbanti, M.; Sacchi, N.; et al. Antithymocyte Globulin for Graft-versus-Host Disease Prophylaxis in Transplants from Unrelated Donors: 2 Randomized Studies from Gruppo Italiano Trapianti Midollo Osseo (GITMO). Blood 2001, 98, 2942–2947. [Google Scholar] [CrossRef]
- Finke, J.; Bethge, W.A.; Schmoor, C.; Ottinger, H.D.; Stelljes, M.; Zander, A.R.; Volin, L.; Ruutu, T.; Heim, D.A.; Schwerdtfeger, R.; et al. Standard Graft-versus-Host Disease Prophylaxis with or without Anti-T-Cell Globulin in Haematopoietic Cell Transplantation from Matched Unrelated Donors: A Randomised, Open-Label, Multicentre Phase 3 Trial. Lancet Oncol 2009, 10, 855–864. [Google Scholar] [CrossRef]
- Oostenbrink, L.V.E.; Jol-Van Der Zijde, C.M.; Kielsen, K.; Jansen-Hoogendijk, A.M.; Ifversen, M.; Müller, K.G.; Lankester, A.C.; Van Halteren, A.G.S.; Bredius, R.G.M.; Schilham, M.W.; et al. Differential Elimination of Anti-Thymocyte Globulin of Fresenius and Genzyme Impacts T-Cell Reconstitution After Hematopoietic Stem Cell Transplantation. Front Immunol 2019, 10. [Google Scholar] [CrossRef]
- Terasako, K.; Sato, K.; Sato, M.; Kimura, S.I.; Nakasone, H.; Okuda, S.; Kako, S.; Tanaka, Y.; Yamazaki, R.; Oshima, K.; et al. The Effect of Different ATG Preparations on Immune Recovery after Allogeneic Hematopoietic Stem Cell Transplantation for Severe Aplastic Anemia. Hematology 2010, 15, 165–169. [Google Scholar] [CrossRef]

| ATG formulation | Type of antibodies | Recommended dose for GvHD prophylaxis (total, mg/kg) |
|---|---|---|
| h-ATG | Polyclonal IgG from horses immunised with human thymocytes | - |
| ATG-T | Polyclonal IgG from rabbits immunised with human thymocytes | 2,5–10 |
| ATG-G | Polyclonal IgG from rabbits immunised with human Jurkat T leukaemia cell line | 15–60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
