Submitted:
27 June 2023
Posted:
27 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results and discussion
3.1. Publications identified with the PRISMA2020 methodology

3.2. Literature review
3.2.1. Drought factors
3.2.2. Drought indices
3.2.3. Other drought assessment methodologies
3.2.4. Drought descriptors
3.2.5. Current drought regime
3.2.6. Drought impacts
3.2.7. Future drought regime
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response To; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Science, J.B.R.M., Chen, Y., Zhou, X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T., Eds.; Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3-24, 2018; ISBN 9781009157940.
- Lloyd-Hughes, B. The Impracticality of a Universal Drought Definition. Theor. Appl. Climatol. 2014, 117, 607–611. [Google Scholar] [CrossRef]
- Herrera-Estrada, J.E.; Satoh, Y.; Sheffield, J. Spatiotemporal Dynamics of Global Drought. Geophys. Res. Lett. 2017, 2254–2263. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO) and Global Water Partnership (GWP). Handbook of Drought Indicators and Indices. Manag. Tools Guidel. Ser. 2. Geneva 2016, 1, 1068–1069. [CrossRef]
- AghaKouchak, A.; Mirchi, A.; Madani, K.; Di Baldassarre, G.; Nazemi, A.; Alborzi, A.; Anjileli, H.; Azarderakhsh, M.; Chiang, F.; Hassanzadeh, E.; et al. Anthropogenic Drought: Definition, Challenges, and Opportunities. Rev. Geophys. 2021, 59. [Google Scholar] [CrossRef]
- Parente, J.; Amraoui, M.; Menezes, I.; Pereira, M.G. Portugal : Current Regime, Comparison of Indices and Impacts on Extreme Wild Fi Res. Sci. Total Environ. 2019, 685, 150–173. [Google Scholar] [CrossRef]
- Schwarz, M.; Landmann, T.; Cornish, N.; Wetzel, K.F.; Siebert, S.; Franke, J. A Spatially Transferable Drought Hazard and Drought Risk Modeling Approach Based on Remote Sensing Data. Remote Sens. 2020, 12. [Google Scholar] [CrossRef]
- Blauhut, V. The Triple Complexity of Drought Risk Analysis and Its Visualisation via Mapping: A Review across Scales and Sectors. Earth-Science Rev. 2020, 210, 103345. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Rhee, J.; Cho, J. Future Changes in Drought Characteristics: Regional Analysis for South Korea under CMIP5 Projections. J. Hydrometeorol. 2016, 17, 437–451. [Google Scholar] [CrossRef]
- Van Loon, A.F. Hydrological Drought Explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Carroll, C.J.W.; Slette, I.J.; Griffin-Nolan, R.J.; Baur, L.E.; Hoffman, A.M.; Denton, E.M.; Gray, J.E.; Post, A.K.; Johnston, M.K.; Yu, Q.; et al. Is a Drought a Drought in Grasslands? Productivity Responses to Different Types of Drought. Oecologia 2021, 197, 1017–1026. [Google Scholar] [CrossRef]
- IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Pauline, K.J.M., Plattner, G.-K., Allen, S.K., Tignor, M., Midgle, P.M., Eds.; Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 pp., 2012; Vol. 9781107025; ISBN 9781139177245.
- Mehran, A.; Mazdiyasni, O.; Aghakouchak, A. A Hybrid Framework for Assessing Socioeconomic Drought: Linking Climate Variability, Local Resilience, and Demand. J. Geophisycal Res. Atmos. 2015, 175, 238. [Google Scholar] [CrossRef]
- Hoffmann, D.; Gallant, A.J.E.; Arblaster, J.M. Uncertainties in Drought From Index and Data Selection. J. Geophys. Res. Atmos. 2020, 1–21. [Google Scholar] [CrossRef]
- Paulo, A.A.; Rosa, R.D.; Pereira, L.S. Climate Trends and Behaviour of Drought Indices Based on Precipitation and Evapotranspiration in Portugal. Nat. Hazards Earth Syst. Sci. 2012, 12, 1481–1491. [Google Scholar] [CrossRef]
- Ramirez, S.G.; Hales, R.C.; Williams, G.P.; Jones, N.L. Extending SC-PDSI-PM with Neural Network Regression Using GLDAS Data and Permutation Feature Importance. Environ. Model. Softw. 2022, 157, 105475. [Google Scholar] [CrossRef]
- DAI, A. Global Palmer Drought Severity Index (PDSI). Available online: https://rda.ucar.edu/datasets/ds299.0/citation/ (accessed on 14 April 2023).
- Xu, Y.; Wang, L.; Ross, K.W.; Liu, C.; Berry, K. Standardized Soil Moisture Index for Drought Monitoring Based on Soil Moisture Active Passive Observations and 36 Years of North American Land Data Assimilation System Data: A Case Study in the Southeast United States. Remote Sens. 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Hussain, I.; Faisal, M.; Almanjahie, I.M.; Ahmad, I.; Khan, D.M.; Grzegorczyk, M.; Qamar, S. A Probabilistic Weighted Joint Aggregative Drought Index (PWJADI) Criterion for Drought Monitoring Systems. Tellus, Ser. A Dyn. Meteorol. Oceanogr. 2019, 71, 1–21. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, G.; An, W.; Zou, X.; Li, H.; Hou, M. Timescale Differences between SC-PDSI and SPEI for Drought Monitoring in China. Phys. Chem. Earth 2017, 102, 48–58. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Kamble, D.B.; Gautam, S.; Bisht, H.; Rawat, S.; Kundu, A. Drought Assessment for Kharif Rice Using Standardized Precipitation Index (SPI) and Vegetation Condition Index (VCI). J. Agrometeorol. 2019, 21, 182–187. [Google Scholar] [CrossRef]
- Lweendo, M.K.; Lu, B.; Wang, M.; Zhang, H.; Xu, W. Characterization of Droughts in Humid Subtropical Region, Upper Kafue River Basin (Southern Africa). Water (Switzerland) 2017, 9, 242. [Google Scholar] [CrossRef]
- Paulo, A.A.; Pereira, L.S.; Matias, P.G. Analysis of Local and Regional Droughts in Southern Portugal Using the Theory of Runs and the Standardised Precipitation Index. 2003, 55–78. [CrossRef]
- Vicente-Serrano, S.M. Differences in Spatial Patterns of Drought on Different Time Scales: An Analysis of the Iberian Peninsula. Water Resour. Manag. 2006, 20, 37–60. [Google Scholar] [CrossRef]
- Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index User Guide. World Meteorol. Organ. Wather.Climate.Water, WMO-No.1090. Water, WMO-No.1090, 2012; 63, 197–200. [Google Scholar]
- Singh, O.; Saini, D.; Bhardwaj, P. Characterization of Meteorological Drought over a Dryland Ecosystem in North Western India; Springer Netherlands, 2021; Vol. 109; ISBN 0123456789.
- Khan, M.Z.K.; Rahman, A.; Rahman, M.A.; Renzaho, A.M.N. Impact of Droughts on Child Mortality: A Case Study in Southern African Countries. Nat. Hazards 2021, 108, 2211–2224. [Google Scholar] [CrossRef]
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions. Droughts 2021, 33–33. [Google Scholar] [CrossRef]
- Nam, W.H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought Hazard Assessment in the Context of Climate Change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO) Atlas of Mortality and Economic Losses From Weather, Climate and Water Extremes (1970-2019); Weather Climate Water, 2021; ISBN 9789263112675.
- Abiodun, B.J.; Makhanya, N.; Abatan, A.; Oguntunde, P.G. Future Projection of Droughts over Major River Basins in Southern Africa at Specific Global Warming Levels. 2019. [CrossRef]
- Fasihi, S.; Lim, W.Z.; Wu, W.; Proverbs, D. Systematic Review of Flood and Drought Literature Based on Science Mapping and Content Analysis. Water (Switzerland) 2021, 13. [Google Scholar] [CrossRef]
- Gautier, D.; Denis, D.; Locatelli, B. Impacts of Drought and Responses of Rural Populations in West Africa: A Systematic Review. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 666–681. [Google Scholar] [CrossRef]
- Hasan, H.H.; Fatin, S.; Razali, M.; Muhammad, N.S.; Ahmad, A. Research Trends of Hydrological Drought : 2019, 1–19.
- Kamara, J.K.; Sahle, B.W.; Agho, K.E.; Renzaho, A.M.N. Governments’ Policy Response to Drought in Eswatini and Lesotho: A Systematic Review of the Characteristics, Comprehensiveness, and Quality of Existing Policies to Improve Community Resilience to Drought Hazards. Discret. Dyn. Nat. Soc. 2020, 2020. [Google Scholar] [CrossRef]
- Lieber, M.; Chin-Hong, P.; Kelly, K.; Dandu, M.; Weiser, S.D. A Systematic Review and Meta-Analysis Assessing the Impact of Droughts, Flooding, and Climate Variability on Malnutrition. Glob. Public Health 2022, 17, 68–82. [Google Scholar] [CrossRef]
- Ngcamu, B.S.; Chari, F. Drought Influences on Food Insecurity in Africa: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 1–17. [Google Scholar] [CrossRef]
- Seka, A.M.; Zhang, J.; Prodhan, F.A.; Ayele, G.T.; Finsa, M.M.; Sharma, T.P.P.; Melesse, A.M. Hydrological Drought Impacts on Water Storage Variations: A Focus on the Role of Vegetation Changes in the East Africa Region. A Systematic Review. Environ. Sci. Pollut. Res. 2022, 29, 80237–80256. [Google Scholar] [CrossRef]
- Coughlan de Perez, E.; Fuentes, I.; Jack, C.; Kruczkiewicz, A.; Pinto, I.; Stephens, E. Different Types of Drought under Climate Change or Geoengineering: Systematic Review of Societal Implications. Front. Clim. 2022, 4. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Limones, N.; Marzo-artigas, J.; Wijnen, M. Evaluating Drought Risk in Data-Scarce Contexts. The Case of Southern Angola. 2020. [CrossRef]
- Luetkemeier, R.; Stein, L.; Drees, L.; Liehr, S. Blended Drought Index: Integrated Drought Hazard Assessment in the Cuvelai-Basin. Climate 2017, 5. [Google Scholar] [CrossRef]
- Rouault, M.; Richard, Y. Intensity and Spatial Extent of Droughts in Southern Africa. Geophys. Res. Lett. 2005, 32, 2–5. [Google Scholar] [CrossRef]
- Marumbwa, F.M.; Cho, M.A.; Chirwa, P.W. Geospatial Analysis of Meteorological Drought Impact on Southern Africa Biomes. Int. J. Remote Sens. 2021, 42, 2155–2173. [Google Scholar] [CrossRef]
- Ambeje, P.G. Regional Drought Monitoring Centres – The Case of Eastern and Southern Africa. In Early Warning Systems for Drought Preparedness and Drought Management; Wilhite, D.A., Sivakumar, M.V.K., Wood, D.A., Ambenje, P.G., Eds.; Proceedings of an Expert Group Meeting held in Lisbon, Portugal, 5-7 September 2000.; Geneva, Switzerland: World Meteorological Organization, 2000; p. 147. ISBN 2013206534. [Google Scholar]
- Ujeneza, E.L.; Abiodun, B.J. Drought Regimes in Southern Africa and How Well GCMs Simulate Them. 2014, 1595–1609. [CrossRef]
- Manatsa, D.; Mushore, T.; Lenouo, A. Improved Predictability of Droughts over Southern Africa Using the Standardized Precipitation Evapotranspiration Index and ENSO. Theor. Appl. Climatol. 2017, 127, 259–274. [Google Scholar] [CrossRef]
- Gore, M.; Abiodun, B.J.; Kucharski, F. Understanding the Influence of ENSO Patterns on Drought over Southern Africa Using SPEEDY. Clim. Dyn. 2020, 54, 307–327. [Google Scholar] [CrossRef]
- Milgroom, J.; Giller, K.E. Courting the Rain: Rethinking Seasonality and Adaptation to Recurrent Drought in Semi-Arid Southern Africa. Agric. Syst. 2013, 118, 91–104. [Google Scholar] [CrossRef]
- Richard, Y.; Fauchereau, N.; Poccard, I.; Rouault, M.; Trzaska, S. 20th Century Droughts in Southern Africa: Spatial and Temporal Variability, Teleconnections with Oceanic and Atmospheric Conditions. Int. J. Climatol. 2001, 21, 873–885. [Google Scholar] [CrossRef]
- Manatsa, D.; Chingombe, W.; Matsikwa, H.; Matarira, C.H. The Superior Influence of Darwin Sea Level Pressure Anomalies over ENSO as a Simple Drought Predictor for Southern Africa. Theor. Appl. Climatol. 2008, 92, 1–14. [Google Scholar] [CrossRef]
- Funk, C.; Davenport, F.; Harrison, L.; Magadzire, T.; Galu, G.; Artan, G.A.; Shukla, S.; Korecha, D.; Indeje, M.; Pomposi, C.; et al. Anthropogenic Enhancement of Moderate-to-Strong El Niño Events Likely Contributed to Drought and Poor Harvests in Southern Africa during 2016. Bull. Am. Meteorol. Soc. 2018, 99, S91–S96. [Google Scholar] [CrossRef]
- Blamey, R.C.; Kolusu, S.R.; Mahlalela, P.; Todd, M.C.; Reason, C.J.C. The Role of Regional Circulation Features in Regulating El Niño Climate Impacts over Southern Africa: A Comparison of the 2015/2016 Drought with Previous Events. Int. J. Climatol. 2018, 38, 4276–4295. [Google Scholar] [CrossRef]
- Marumbwa, F.M.; Cho, M.A.; Chirwa, P.W. An Assessment of Remote Sensing-Based Drought Index over Different Land Cover Types in Southern Africa. Int. J. Remote Sens. 2020, 41, 1–15. [Google Scholar] [CrossRef]
- Lawal, S.; Lennard, C.; Jack, C.; Wolski, P.; Hewitson, B. The Observed and Model-Simulated Response of Southern African Vegetation to Drought. Agric. For. Meteorol. 2019, 279, 107698. [Google Scholar] [CrossRef]
- Zeidler, J.; Chunga, R. Drought Hazard and Land Management in the Drylands of Southern Africa. In Climate and Land Degradation; K.Sivakumar·, M. V., NdegwaNdiang’ui, Eds.; Tanzania Meteorological Agency (TMA) United NationsConventiontoCombat Desertification (UNCCD) World Meteorological Organization (WMO), 2007; p. 309 ISBN 9783540724377.
- Yuan, X.; Wang, L.; Wood, E.F. Anthropogenic Intensification of Southern African Flash Droughts as Exemplified by the 2015/16 Season. Bull. Am. Meteorol. Soc. 2018, 99, S86–S90. [Google Scholar] [CrossRef]
- Funk, C.; Harrison, L.; Shukla, S.; Hoell, A.; Korecha, D.; Magadzire, T.; Husak, G.; Galu, G. Assessing the Contributions of Local and East Pacific Warming to the 2015 Droughts in Ethiopia and Southern Africa. in Explaining Extreme Events of 2015; Herring, S.C., Hoell, A., Hoerling, M.P., Kossin, J.P., III, C.J.S., Stott, P.A., Eds.; Explaining extreme events of 2015 from a climate perspective. Special Supplement to the Bulletin of the American Meteorological Society/Vol. 97, No. 12, (pp. S75-S80)., 2016; p. 75.
- Lyon, B. Southern Africa Summer Drought and Heat Waves: Observations and Coupled Model Behavior. J. Clim. 2009, 22, 6033–6046. [Google Scholar] [CrossRef]
- Meque, A.; Abiodun, B.J. Simulating the Link between ENSO and Summer Drought in Southern Africa Using Regional Climate Models. Clim. Dyn. 2015, 44, 1881–1900. [Google Scholar] [CrossRef]
- Tate, E.L.; Freeman, S.N. Three Modelling Approaches for Seasonal Streamflow Droughts in Southern Africa: The Use of Censored Data. Hydrol. Sci. J. 2000, 45, 27–42. [Google Scholar] [CrossRef]
- Shukla, S.; R. Arsenault, K.; Hazra, A.; Peters-Lidard, C.; D. Koster, R.; Davenport, F.; Magadzire, T.; Funk, C.; Kumar, S.; McNally, A.; et al. Improving Early Warning of Drought-Driven Food Insecurity in Southern Africa Using Operational Hydrological Monitoring and Forecasting Products. Nat. Hazards Earth Syst. Sci. 2020, 20, 1187–1201. [CrossRef]
- Lawal, S.; Sitch, S.; Lombardozzi, D.; Nabel, J.E.M.S.; Wey, H.W.; Friedlingstein, P.; Tian, H.; Hewitson, B. Investigating the Response of Leaf Area Index to Droughts in Southern African Vegetation Using Observations and Model Simulations. Hydrol. Earth Syst. Sci. 2022, 26, 2045–2071. [Google Scholar] [CrossRef]
- Trambauer, P.; Maskey, S.; Werner, M.; Pappenberger, F.; Van Beek, L.P.H.; Uhlenbrook, S. Identification and Simulation of Space-Time Variability of Past Hydrological Drought Events in the Limpopo River Basin, Southern Africa. Hydrol. Earth Syst. Sci. 2014, 18, 2925–2942. [Google Scholar] [CrossRef]
- Rusca, M.; Savelli, E.; Di Baldassarre, G.; Biza, A.; Messori, G. Unprecedented Droughts Are Expected to Exacerbate Urban Inequalities in Southern Africa. Nat. Clim. Chang. 2023, 13, 98–105. [Google Scholar] [CrossRef]
- Tesfaye, K.; Sonder, K.; Cairns, J.; Magorokosho, C.; Tarekegn, A.; Kassie, G.T.; Getaneh, F.; Abdoulaye, T.; Abate, T.; Erenstein, O. Targeting Drought-Tolerant Maize Varieties in Southern Africa: A Geospatial Crop Modeling Approach Using Big Data. Int. Food Agribus. Manag. Rev. 2016, 19, 75–92. [Google Scholar]
- Trambauer, P.; Werner, M.; Winsemius, H.C.; Maskey, S.; Dutra, E.; Uhlenbrook, S. Hydrological Drought Forecasting and Skill Assessment for the Limpopo River Basin, Southern Africa. Hydrol. Earth Syst. Sci. 2015, 19, 1695–1711. [Google Scholar] [CrossRef]
- Chisadza, B.; Tumbare, M.J.; Nyabeze, W.R.; Nhapi, I. Linkages between Local Knowledge Drought Forecasting Indicators and Scientific Drought Forecasting Parameters in the Limpopo River Basin in Southern Africa. Int. J. Disaster Risk Reduct. 2015, 12, 226–233. [Google Scholar] [CrossRef]
- Sifundza, L.; Zaag, P. van der; Masih, I. Evaluation of the Responses of Institutions and Actors to the 2015 / 2016 El Niño Drought in the Komati Catchment in Southern Africa : Lessons to Support Future Drought Management. 2019, 45, 547–559. [Google Scholar] [CrossRef]
- Nangombe, S.; Zhou, T.; Zhang, L.; Zhang, W. Attribution of the 2018 October–December drought over South Southern Africa. In Explaining Extreme Events of 2018 from a Climate Perspective; Herring, S.C., Christidis, N., Hoell, A., Hoerling, M.P., Stott, P.A., King, A., Knutson, T., Nielsen-Gammon, J., Special, F.O., Eds.; Bulletin of the American Meteorological Society, 2020; Vol. 101, p. 135.
- Meigh, J.; Tate, E.; McCartney, M. Methods for Identifying and Monitoring River Flow Drought in Southern Africa. IAHS-AISH Publ. 2002, 181–188.
- Nash, D.J.; Klein, J.; Endfield, G.H.; Pribyl, K.; Adamson, G.C.D.; Grab, S.W. Narratives of Nineteenth Century Drought in Southern Africa in Different Historical Source Types. Clim. Change 2019, 152, 467–485. [Google Scholar] [CrossRef]
- Vogel, C.; Koch, I.; Van Zyl, K. “A Persistent Truth”-Reflections on Drought Risk Management in Southern Africa. Weather. Clim. Soc. 2010, 2, 9–22. [Google Scholar] [CrossRef]
- Villholth, K.G.; Tøttrup, C.; Stendel, M.; Maherry, A. Integrated Mapping of Groundwater Drought Risk in the Southern African Development Community (SADC) Region. Hydrogeol. J. 2013, 21, 863–885. [Google Scholar] [CrossRef]
- Watson, A.; Miller, J.; Künne, A.; Kralisch, S. Using Soil-Moisture Drought Indices to Evaluate Key Indicators of Agricultural Drought in Semi-Arid Mediterranean Southern Africa. Sci. Total Environ. 2022, 812. [Google Scholar] [CrossRef]
- Nhamo, L.; Mabhaudhi, T.; Modi, A.T. Preparedness or Repeated Short-Term Relief Aid? Building Drought Resilience through Early Warning in Southern Africa. Water SA 2019, 45, 75–85. [Google Scholar] [CrossRef]
- Makondo, C.C.; Thomas, D.S.G. Seasonal and Intra-Seasonal Rainfall and Drought Characteristics as Indicators of Climate Change and Variability in Southern Africa: A Focus on Kabwe and Livingstone in Zambia. Theor. Appl. Climatol. 2020, 140, 271–284. [Google Scholar] [CrossRef]
- Hope, A.; Fouad, G.; Granovskaya, Y. Evaluating Drought Response of Southern Cape Indigenous Forests, South Africa, Using MODIS Data. Int. J. Remote Sens. 2014, 35, 4852–4864. [Google Scholar] [CrossRef]


| Drought class | PDSI value | SPI and SPEI value |
|---|---|---|
| Extremely wet | ≥4.00 | ≥2.00 |
| Severely wet | 3.00 to 3.99 | 1.50 to 1.99 |
| Moderately wet | 2.00 to 2.99 | 1.00 to 1.49 |
| Slightly wet | 1.00 to 1.99 | 0.50 to 0.99 |
| Near Normal | -0.99 to 0.99 | -0.49 to 0.49 |
| Mild dry | -1.99 to -1.00 | -0.99 to -0.50 |
| Moderate dry | -2.99 to -2.00 | -1.49 to -1.00 |
| Severe dry | -3.99 to -3.00 | -1.99 to -1.50 |
| Extremely dry | ≤ -4.00 | ≤-2.00 |
| Inclusion criteria | Exclusion criteria |
|---|---|
| Written in English. | Not be written in English. |
| Peer-reviewed articles and journals. | Non-peer-reviewed articles and journals. |
| Published after the year 2000 | Publishes before 2000 |
| Focus on the drought descriptors, factors and impacts. | Not focused on drought descriptors, factors and impacts. |
| WMO Reports. | Documents, letters and reports not published by WMO and indexed journals. |
| Review Articles and Letters. | |
| Study area outside SA. |
| Database | Website address | N | Access date | Search procedure |
|---|---|---|---|---|
| WoS | https://www.webofscience.com/ | 75 | March 14, 2023 | Research equation |
| SCOPUS | https://www.scopus.com/ | 77 | March 14, 2023 | Research equation |
| Google Scholar | https://www.mdpi.com/2225-1154/5/3/51 | 1 | April 22, 2023 | Citation searching |
| https://iwaponline.com/jwcc/article/ | 1 | April 22, 2023 | Citation searching 1 |
| Factors | Studies | N(#) | n(%) |
| El Niño Southern Oscillation (ENSO) | [29,45,54,55,56,46,47,48,49,50,51,52,53] | 13 | 32 |
| Other Ocean-Atmosphere interactions | [33,47,49,50,53,55,57] | 7 | 17 |
| Sea surface temperature (SST) | [48,52,53,54,55] | 5 | 12 |
| Anthropic influence (e.g., fires, gas emissions and global warming) | [24,33,56,58,59,60] | 6 | 15 |
| Heatwaves | [59,61] | 2 | 5 |
| Indices | Studies | N(#) | n(%) |
| SPI | [24,29,69,70,71,33,45,49,53,55,57,67,68] | 13 | 32 |
| SPEI | [24,33,65,69,44,46,48,49,50,56,57,62] | 12 | 29 |
| SRI | [24,66,69,71] | 4 | 10 |
| ENSO | [47,48,54,72] | 4 | 10 |
| VCI | [44,46,56] | 3 | 7 |
| NDVI | [56,57,70] | 3 | 7 |
| SOI | [49,52,53] | 3 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
